Triangular bifrustum

Last updated
Triangular bifrustum
Dual elongated triangular dipyramid.png
Type Bifrustum
Faces 6 trapezoids,
2 triangles
Edges 15
Vertices 9
Symmetry group D3h
Dual polyhedron Elongated triangular bipyramid
Properties convex
Net
Dual elongated triangular dipyramid net.png

In geometry, the triangular bifrustum is the second in an infinite series of bifrustum polyhedra. It has 6 trapezoid and 2 triangle faces. It may also be called the truncated triangular bipyramid; however, that term is ambiguous, as it may also refer to polyhedra formed by truncating all five vertices of a triangular bipyramid. [1]

This polyhedron can be constructed by taking a triangular bipyramid and truncating the polar axis vertices, making it into two end-to-end frustums. It appears as the form of certain nanocrystals. [2] [3]

A truncated triangular bipyramid can be constructed by connecting two stacked regular octahedra with 3 pairs of tetrahedra around the sides. This represents a portion of the gyrated alternated cubic honeycomb.

Triangulated truncated triangular bipyramid.png

Related Research Articles

<span class="mw-page-title-main">Octahedron</span> Polyhedron with eight triangular faces

In geometry, an octahedron is a polyhedron with eight faces. The term is most commonly used to refer to the regular octahedron, a Platonic solid composed of eight equilateral triangles, four of which meet at each vertex.

<span class="mw-page-title-main">Rhombicuboctahedron</span> Archimedean solid with 26 faces

In geometry, the rhombicuboctahedron, or small rhombicuboctahedron or Rectified Rhombic Dodecahedron, is a polyhedron with eight triangular, six square, and twelve rectangular faces. There are 24 identical vertices, with one triangle, one square, and two rectangles meeting at each one. If all the rectangles are themselves square, it is an Archimedean solid. The polyhedron has octahedral symmetry, like the cube and octahedron. Its dual is called the deltoidal icositetrahedron or trapezoidal icositetrahedron, although its faces are not really true trapezoids.

<span class="mw-page-title-main">Truncated tetrahedron</span> Archimedean solid with 8 faces

In geometry, the truncated tetrahedron is an Archimedean solid. It has 4 regular hexagonal faces, 4 equilateral triangle faces, 12 vertices and 18 edges. It can be constructed by truncating all 4 vertices of a regular tetrahedron at one third of the original edge length.

<span class="mw-page-title-main">Triangular bipyramid</span> 12th Johnson solid; two tetrahedra joined along one face

In geometry, the triangular bipyramid is a type of hexahedron, being the first in the infinite set of face-transitive bipyramids. It is the dual of the triangular prism with 6 isosceles triangle faces.

<span class="mw-page-title-main">Triaugmented triangular prism</span> Convex polyhedron with 14 triangle faces

The triaugmented triangular prism, in geometry, is a convex polyhedron with 14 equilateral triangles as its faces. It can be constructed from a triangular prism by attaching equilateral square pyramids to each of its three square faces. The same shape is also called the tetrakis triangular prism, tricapped trigonal prism, tetracaidecadeltahedron, or tetrakaidecadeltahedron; these last names mean a polyhedron with 14 triangular faces. It is an example of a deltahedron and of a Johnson solid.

<span class="mw-page-title-main">Pentagonal bipyramid</span> 13th Johnson solid; two pentagonal pyramids joined at the bases

In geometry, the pentagonal bipyramid is third of the infinite set of face-transitive bipyramids, and the 13th Johnson solid. Each bipyramid is the dual of a uniform prism.

<span class="mw-page-title-main">Elongated square bipyramid</span> 15th Johnson solid; cube capped by 2 square pyramids

In geometry, the elongated square bipyramid is one of the Johnson solids. As the name suggests, it can be constructed by elongating an octahedron by inserting a cube between its congruent halves.

<span class="mw-page-title-main">Augmented triangular prism</span> 49th Johnson solid

In geometry, the augmented triangular prism is one of the Johnson solids. As the name suggests, it can be constructed by augmenting a triangular prism by attaching a square pyramid to one of its equatorial faces. The resulting solid bears a superficial resemblance to the gyrobifastigium, the difference being that the latter is constructed by attaching a second triangular prism, rather than a square pyramid.

<span class="mw-page-title-main">Hexagonal bipyramid</span> Polyhedron; 2 hexagonal pyramids joined base-to-base

A hexagonal bipyramid is a polyhedron formed from two hexagonal pyramids joined at their bases. The resulting solid has 12 triangular faces, 8 vertices and 18 edges. The 12 faces are identical isosceles triangles.

<span class="mw-page-title-main">Uniform polyhedron</span> Isogonal polyhedron with regular faces

In geometry, a uniform polyhedron has regular polygons as faces and is vertex-transitive. It follows that all vertices are congruent.

<span class="mw-page-title-main">Square antiprism</span>

In geometry, the square antiprism is the second in an infinite family of antiprisms formed by an even-numbered sequence of triangle sides closed by two polygon caps. It is also known as an anticube.

<span class="mw-page-title-main">Pentagonal bifrustum</span>

The pentagonal bifrustum or truncated pentagonal bipyramid is the third in an infinite series of bifrustum polyhedra. It has 10 trapezoid and 2 pentagonal faces.

<span class="mw-page-title-main">Square bifrustum</span>

The square bifrustum or square truncated bipyramid is the second in an infinite series of bifrustum polyhedra. It has 4 trapezoidal and 2 square faces.

<span class="mw-page-title-main">Cubic honeycomb</span> Only regular space-filling tessellation of the cube

The cubic honeycomb or cubic cellulation is the only proper regular space-filling tessellation in Euclidean 3-space made up of cubic cells. It has 4 cubes around every edge, and 8 cubes around each vertex. Its vertex figure is a regular octahedron. It is a self-dual tessellation with Schläfli symbol {4,3,4}. John Horton Conway called this honeycomb a cubille.

<span class="mw-page-title-main">Truncation (geometry)</span> Operation that cuts polytope vertices, creating a new facet in place of each vertex

In geometry, a truncation is an operation in any dimension that cuts polytope vertices, creating a new facet in place of each vertex. The term originates from Kepler's names for the Archimedean solids.

<span class="mw-page-title-main">Conway polyhedron notation</span> Method of describing higher-order polyhedra

In geometry, Conway polyhedron notation, invented by John Horton Conway and promoted by George W. Hart, is used to describe polyhedra based on a seed polyhedron modified by various prefix operations.

<span class="mw-page-title-main">Tetradecahedron</span> Polyhedron with 14 faces

A tetradecahedron is a polyhedron with 14 faces. There are numerous topologically distinct forms of a tetradecahedron, with many constructible entirely with regular polygon faces.

In geometry and polyhedral combinatorics, the Kleetope of a polyhedron or higher-dimensional convex polytope P is another polyhedron or polytope PK formed by replacing each facet of P with a shallow pyramid. Kleetopes are named after Victor Klee.

<span class="mw-page-title-main">Order-5 truncated pentagonal hexecontahedron</span>

The order-5 truncated pentagonal hexecontahedron is a convex polyhedron with 72 faces: 60 hexagons and 12 pentagons triangular, with 210 edges, and 140 vertices. Its dual is the pentakis snub dodecahedron.

<span class="mw-page-title-main">Rectified prism</span>

In geometry, a rectified prism is one of an infinite set of polyhedra, constructed as a rectification of an n-gonal prism, truncating the vertices down to the midpoint of the original edges. In Conway polyhedron notation, it is represented as aPn, an ambo-prism. The lateral squares or rectangular faces of the prism become squares or rhombic faces, and new isosceles triangle faces are truncations of the original vertices.

References

  1. For instance, Haji-Akbari et al. use it in the latter sense: see Haji-Akbari, Amir; Chen, Elizabeth R.; Engel, Michael; Glotzer, Sharon C. (2013), "Packing and self-assembly of truncated triangular bipyramids", Phys. Rev. E, 88 (1): 012127, arXiv: 1304.3147 , Bibcode:2013PhRvE..88a2127H, doi:10.1103/physreve.88.012127, PMID   23944434, S2CID   8184675 .
  2. Kharisov, Boris I.; Kharissova, Oxana Vasilievna; Ortiz-Mendez, Ubaldo (2012), Handbook of Less-Common Nanostructures, CRC Press, p. 466, ISBN   9781439853436 .
  3. Yoo, Hyojong; Millstone, Jill E.; Li, Shuzhou; Jang, Jae-Won; Wei, Wei; Wu, Jinsong; Schatz, George C.; Mirkin, Chad A. (2009), "Core–Shell Triangular Bifrustums", Nano Letters, 9 (8): 3038–3041, Bibcode:2009NanoL...9.3038Y, doi:10.1021/nl901513g, PMC   3930336 , PMID   19603815 .