Triboracyclopropenyl

Last updated
Both the B3 fragment and the B3R3 fragment (with electron-sharing B-R bonds) are Huckel-aromatic forms of the triboracyclopropenyl fragment. Aromatic triboracyclopropenyl derivatives.png
Both the B3 fragment and the B3R3 fragment (with electron-sharing B−R bonds) are Hückel-aromatic forms of the triboracyclopropenyl fragment.

The triboracyclopropenyl fragment is a cyclic structural motif in boron chemistry, named for its geometric similarity to cyclopropene. In contrast to nonplanar borane clusters that exhibit higher coordination numbers at boron (e.g., through 3-center 2-electron bonds to bridging hydrides or cations), triboracyclopropenyl-type structures are rings of three boron atoms where substituents at each boron are also coplanar to the ring. Triboracyclopropenyl-containing compounds are extreme cases of inorganic aromaticity. They are the lightest and smallest cyclic structures known to display the bonding and magnetic properties that originate from fully delocalized electrons in orbitals of σ and π symmetry. Although three-membered rings of boron are frequently so highly strained as to be experimentally inaccessible, academic interest in their distinctive aromaticity and possible role as intermediates of borane pyrolysis motivated extensive computational studies by theoretical chemists. [1] [2] [3] [4] Beginning in the late 1980s with mass spectrometry work by Anderson et al. on all-boron clusters, experimental studies of triboracyclopropenyls were for decades exclusively limited to gas-phase investigations of the simplest rings (ions of B3). [4] [5] [6] However, more recent work has stabilized the triboracyclopropenyl moiety via coordination to donor ligands or transition metals, dramatically expanding the scope of its chemistry. [7] [8] [9] [10]

Contents

Synthesis

Laser ablation of a mixed target containing iridium and boron generates a cluster beam containing two IrB3 isomers of very similar energy. IrB3-ablation-quality.png
Laser ablation of a mixed target containing iridium and boron generates a cluster beam containing two IrB3 isomers of very similar energy.

For gas-phase spectroscopic studies, triboracyclopropenyl-containing compounds are obtained via laser ablation of boron targets and collimation of the resulting plasma cloud in a flow of inert carrier gas such as helium. The charged molecules of interest are then mass-selected by time-of-flight mass spectrometry. Addition of gases such as N2 or CO to the gas stream affords the corresponding adducts, while addition of metals such as iridium and vanadium to the B target yields the corresponding metal-doped clusters. [11]

Na4[B3(NCy2)3]2 * 2 DME is synthesized by direct reduction of a boron precursor. B3R32-synthesis.png
Na4[B3(NCy2)3]2 • 2 DME is synthesized by direct reduction of a boron precursor.

The sole isolable example of a triboracyclopropenyl anion that persists in solution and in the solid state was identified by Braunschweig and coworkers, who synthesized it by reducing the aminoborane Cl2B=NCy2 (Cy = cyclohexyl) with finely dispersed sodium metal in dimethoxyethane (DME). [7] Cooling of the resulting orange-red solution of the dimeric species Na4[B3(NCy2)3]2 • 2 DME resulted in crystals suitable for X-ray diffraction, by which the structure was determined. Although the detailed reduction mechanism is unknown, it has been suggested that subvalent "R2N−B" intermediates are involved in the formation of such boron clusters. [12]

Structure and bonding

Due to their special status as the simplest aromatic cycles, the electronic structure of triboracyclopropenyl derivatives has been analyzed with a variety of techniques in computational chemistry. These have ranged from canonical molecular orbital theory to alternative formulations of bonding such as adaptive natural density partitioning theory, [13] the quantum theory of atoms in molecules, natural bond orbital theory, natural orbitals for chemical valence [14] and electron localization function analysis. NICS and ring current calculations have also been used to characterize the aromaticity in such systems by using magnetic criteria. [15] In general, the extremely small size of these cycles implies that their bonding electrons experience substantial Coulomb repulsion, resulting in abnormally high ring strain. [16] This effect is partially compensated for by the stabilization offered by aromatic delocalization.

B3+

The HOMO and LUMO of B3 display a2'' and a1' symmetry, respectively. Electron occupation of the former conveys p aromaticity, the latter s aromaticity. B3+ HOMO and LUMO.png
The HOMO and LUMO of B3 display a2'' and a1' symmetry, respectively. Electron occupation of the former conveys π aromaticity, the latter σ aromaticity.

B3+ displays π aromaticity associated with its a2''-symmetric HOMO. In its singlet electronic ground state, it is a Hückel 2π electron system analogous to the cyclopropenium cation, but it is too reactive to be isolated. It is triangular, with D3h symmetry - all of its B atoms and B-B bond distances are chemically equivalent. The gas-phase adducts B3(N2)3+ and B3(CO)3+ have been computationally studied through ETS-NOCV (extended transition state - natural orbitals for chemical valence) theory, which dissects the changes in energy and electron density that result as a molecule is prepared from a reference state of noninteracting fragments. [17] ETS-NOCV energy decomposition analysis suggests that the N2 and CO adducts are primarily stabilized (by -83.6 and -112.3 kcal/mol respectively) through σ donation of the exocyclic ligands into the highly electron-deficient boron ring. As a result, each was interpreted as a B3+ moiety supported by dative bonding from N2 or CO. The electron deformation density constructed from the NOCVs of this system, together with charges derived from natural bond orbital populations, indicate electron flow from the exocyclic ligand into the ring, which induces all the equivalent bonds of the B3+ core to shorten by approximately 4 pm. π-symmetry interactions are observed with both the weak σ donor N2 and the strong π acceptor ligand CO. However, the out-of-plane π backdonation (from the π system of the B3 ring to the π acceptor orbitals of each ligand) is less stabilizing than the in-plane π backdonation, with strengths of -26.7 and -19.6 kcal/mol for the [B3(CO)2+ + CO] system. This suggests that the minimum-energy configuration of the molecule is one which preserves maximal π aromaticity in the B3+ core.

Just as aromatic species like the cyclopentadienyl anion and the cyclopropenium cation can coordinate to transition metals, it was recently demonstrated that the B3+ ring can bind to metal centers. [18] Laser ablation of a mixed B/Ir target produces two isomers of IrB3, a B3+ ring coordinated to a formal Ir2- anion. These are a pseudo-planar η2 adduct and a tetrahedral η3 adduct, the latter of which contains an aromatic triboracyclopropenyl fragment. Both are nearly identical in energy and coexist in the generated cluster beam.

The Natural Bond Orbital corresponding to the sigma bond between B and Ar in B3Ar3 , displaying 82.6% Ar character and 17.4% B character. B-Ar-bond-NBO-oneperspective.png
The Natural Bond Orbital corresponding to the sigma bond between B and Ar in B3Ar3 , displaying 82.6% Ar character and 17.4% B character.
AIM analysis reveals strong polarization of the noble gas Ar in the adduct B3Ar3 . Left: The Laplacian of the electron density distribution. Right: The electron density distribution. AIM B3Ar3+ Laplacian Rho.png
AIM analysis reveals strong polarization of the noble gas Ar in the adduct B3Ar3 . Left: The Laplacian of the electron density distribution. Right: The electron density distribution.

Computations suggest that B3+ may even bind inert noble-gas atoms to form an unusual family of compounds B3(Rg)3+ (Rg = rare/noble gas), with nonnegligible bond strengths (from 15 to 30 kcal/mol) that originate from Rg p-orbital σ donicity and a significant degree of charge transfer from Rg to B3+. The possibility of new noble-gas compounds that form exothermally and spontaneously is an opportunity for experimental work. [19] [21]

B3

B3 possesses a singly occupied a1' HOMO (a SOMO) that consists of σ-symmetric orbitals oriented toward the core of the ring, associated with σ delocalization and slightly shorter B-B bond lengths as compared to B3+. It is paramagnetic with a doublet ground state. [22] It is nonpolar, flat and triangular, having D3h symmetry.

B3

B3, with a filled a1' HOMO in D3h symmetry, is considered to be "doubly" aromatic and relatively stable - it simultaneously possesses highly delocalized σ and π electrons in its HOMO and HOMO-1 respectively. [23] [24]

B3R32-

B3R32-, formulated with electron-sharing B−R bonds rather than dative arrows, is isoelectronic to B3+. 8 electrons are assigned to the triboracyclopenyl core, 6 in σ bonding orbitals and 2 in the π system, resulting in Hückel aromaticity. The only experimentally characterized compound of this class is Na4[B3(NCy2)3]2 • 2 DME, a dimer of stacked B3R32- units which are themselves aromatic. [7] Natural bond orbital analysis indicates that this compound is highly stabilized (by roughly 45 kcal/mol) by a donor-acceptor interaction of localized B−B bond orbitals with corresponding B−N antibonding orbital across the ring, in addition to being bound together by electrostatic attraction to bridging Na+ cations identified in the crystal structure. DFT calculations show that the HOMO and HOMO-1 are antisymmetric and symmetric combinations of the π HOMO of an individual ring, respectively - a feature shared with metallocenes. As expected for a species with B−B bonds that have a formal MO bond order of , the average B-B bond length of 1.62 Å is closer to those of diborene (R-B=B-R) radical cations than B−B single bonds of roughly 1.75 Å.

Spectroscopy and spectrometry

Triboracyclopropenyl-derived compounds were first identified by their mass-to-charge ratio, as transient species in the mass spectrometry of complex mixtures of cationic boron clusters. [5] Reactive scattering studies with O2 soon followed, revealing the relatively strong bonding within light boron clusters. [6] Subsequently, B3 was isolated in matrices of frozen noble gases and electron paramagnetic resonance spectra were recorded which confirmed its D3h geometry. [22] Hyperfine coupling of the unpaired electron to the 11B nucleus provided an estimate of 15% s-orbital character for the a1' HOMO. The small and nonpolar B3 rings were able to tumble and rotate freely even when confined in the matrix.

In general, triboracyclopropenyl-containing species have been too short-lived and produced in insufficient quantity for transmission-mode infrared spectroscopy. However, dissociating B3(N2)3+ with infrared light and observing the decay of the corresponding mass-to-charge signal via mass spectrometry allowed an effective infrared spectrum of B3(N2)3+ to be recorded. [17] [25] This vibrational photodissociation spectrum contained only a single detectable vibration with a redshift of 98 cm−1 relative to gaseous N2, suggesting a highly symmetric B3(N2)3+ adduct with slightly weakened N≡N bonding.

Negatively charged ions containing triboracyclopropenyl have proven amenable to study by photoelectron spectroscopy. By Koopman's theorem, neglecting the effects of strong electron correlation, the kinetic energies of electrons detached by X-rays can be mapped onto binding energies of individual orbitals and reveal the molecular electronic structure. [26] [27] Splitting of the resulting spectral peaks from "vibrational progression" (according to the Franck-Condon principle) indicates how ionization at different energies changes specific vibrational frequencies of the molecule, and such effects on bonding are interpreted in terms of changes to the electron configuration. In B3, an unusually high-intensity and high energy band corresponding to a multielectron or "shake-up" transition (coupled electron detachment and electronic excitation) was observed, suggesting the strong electron correlation present in the triboracyclopropenyl fragment. [4] For IrB3, vibrational progression from the stretching and breathing vibrations of IrB3 could be assigned in the overlaid spectra of both isomers present in the cluster beam. By comparison to computations, the minimum energy structure of IrB3 could then be formulated as a tetrahedron with an intact, aromatic B3+ moiety. [8]

Reactivity

Na4[B3(NCy2)3]2 * 2 DME acts as a strong reductant on a variety of substances. B3R32-reductive-reactivity-withoutsynthesis.png
Na4[B3(NCy2)3]2 • 2 DME acts as a strong reductant on a variety of substances.

The reactivity of triboracyclopropenyl-containing compounds is relatively under-explored, as only one example has been prepared in the solution phase. The compound reported by Braunschweig, Na4[B3(NCy2)3]2 • 2 DME, is an extremely potent reductant with an oxidation potential of -2.42 V vs. the ferrocene/ferrocenium couple. As a result, it is capable of reducing chloroboranes to afford tetrahedral B clusters, along with reducing PbCl2 directly to metallic Pb. In addition, it will undergo a ring-opening reaction at the B3 moiety by abstracting chlorine atoms from hexachloroethane. This level of reducing power is roughly comparable to an alkali metal, and has not been previously observed for any molecule based on an organic framework. [7]

Although most examples of transition metal-doped trinuclear boron clusters do not contain an aromatic triboracyclopropenyl fragment, the reactivity of such species with small molecules is likely to attract increasing scientific interest. It has been demonstrated under the conditions of mass spectrometry that VB3+ dehydrogenates methane to afford the products VB3CH2+ and H2. A minor side reaction that produces VH+ and eliminates B3CH3 is also operative. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Conjugated system</span> System of connected p-orbitals with delocalized electrons in a molecule

In theoretical chemistry, a conjugated system is a system of connected p-orbitals with delocalized electrons in a molecule, which in general lowers the overall energy of the molecule and increases stability. It is conventionally represented as having alternating single and multiple bonds. Lone pairs, radicals or carbenium ions may be part of the system, which may be cyclic, acyclic, linear or mixed. The term "conjugated" was coined in 1899 by the German chemist Johannes Thiele.

<span class="mw-page-title-main">Aromaticity</span> Chemical property

In organic chemistry, aromaticity is a chemical property describing the way in which a conjugated ring of unsaturated bonds, lone pairs, or empty orbitals exhibits a stabilization stronger than would be expected by the stabilization of conjugation alone. The earliest use of the term was in an article by August Wilhelm Hofmann in 1855. There is no general relationship between aromaticity as a chemical property and the olfactory properties of such compounds.

<span class="mw-page-title-main">Borazine</span> Boron compound

Borazine, also known as borazole, is an inorganic compound with the chemical formula B3H6N3. In this cyclic compound, the three BH units and three NH units alternate. The compound is isoelectronic and isostructural with benzene. For this reason borazine is sometimes referred to as “inorganic benzene”. Like benzene, borazine is a colourless liquid with an aromatic odor.

<span class="mw-page-title-main">Homoaromaticity</span> Organic molecular structure

Homoaromaticity, in organic chemistry, refers to a special case of aromaticity in which conjugation is interrupted by a single sp3 hybridized carbon atom. Although this sp3 center disrupts the continuous overlap of p-orbitals, traditionally thought to be a requirement for aromaticity, considerable thermodynamic stability and many of the spectroscopic, magnetic, and chemical properties associated with aromatic compounds are still observed for such compounds. This formal discontinuity is apparently bridged by p-orbital overlap, maintaining a contiguous cycle of π electrons that is responsible for this preserved chemical stability.

<span class="mw-page-title-main">Cyclopentadienylindium(I)</span> Chemical compound

Cyclopentadienylindium(I), C5H5In, is an organoindium compound containing indium in the +1 oxidation state. Commonly abbreviated to CpIn, it is a cyclopentadienyl complex with a half-sandwich structure. It was the first (1957) low-valent organoindium compound reported.

Boroles represent a class of molecules known as metalloles, which are heterocyclic 5-membered rings. As such, they can be viewed as structural analogs of cyclopentadiene, pyrrole or furan, with boron replacing a carbon, nitrogen and oxygen atom respectively. They are isoelectronic with the cyclopentadienyl cation C5H+5 or abbreviated as Cp+ and comprise four π electrons. Although Hückel's rule cannot be strictly applied to borole, it is considered to be antiaromatic due to having 4 π electrons. As a result, boroles exhibit unique electronic properties not found in other metalloles.

Boron monofluoride or fluoroborylene is a chemical compound with the formula BF, one atom of boron and one of fluorine. It is an unstable gas, but it is a stable ligand on transition metals, in the same way as carbon monoxide. It is a subhalide, containing fewer than the normal number of fluorine atoms, compared with boron trifluoride. It can also be called a borylene, as it contains boron with two unshared electrons. BF is isoelectronic with carbon monoxide and dinitrogen; each molecule has 14 electrons.

<span class="mw-page-title-main">Borylene</span>

A borylene is the boron analogue of a carbene. The general structure is R-B: with R an organic moiety and B a boron atom with two unshared electrons. Borylenes are of academic interest in organoboron chemistry. A singlet ground state is predominant with boron having two vacant sp2 orbitals and one doubly occupied one. With just one additional substituent the boron is more electron deficient than the carbon atom in a carbene. For this reason stable borylenes are more uncommon than stable carbenes. Some borylenes such as boron monofluoride (BF) and boron monohydride (BH) the parent compound also known simply as borylene, have been detected in microwave spectroscopy and may exist in stars. Other borylenes exist as reactive intermediates and can only be inferred by chemical trapping.

<i>N</i>-heterocyclic silylene Chemical compound

An N-Heterocyclic silylene (NHSi) is an uncharged heterocyclic chemical compound consisting of a divalent silicon atom bonded to two nitrogen atoms. The isolation of the first stable NHSi, also the first stable dicoordinate silicon compound, was reported in 1994 by Michael Denk and Robert West three years after Anthony Arduengo first isolated an N-heterocyclic carbene, the lighter congener of NHSis. Since their first isolation, NHSis have been synthesized and studied with both saturated and unsaturated central rings ranging in size from 4 to 6 atoms. The stability of NHSis, especially 6π aromatic unsaturated five-membered examples, make them useful systems to study the structure and reactivity of silylenes and low-valent main group elements in general. Though not used outside of academic settings, complexes containing NHSis are known to be competent catalysts for industrially important reactions. This article focuses on the properties and reactivity of five-membered NHSis.

<span class="mw-page-title-main">Hexaphosphabenzene</span> Chemical compound

Hexaphosphabenzene is a valence isoelectronic analogue of benzene and is expected to have a similar planar structure due to resonance stabilization and its sp2 nature. Although several other allotropes of phosphorus are stable, no evidence for the existence of P6 has been reported. Preliminary ab initio calculations on the trimerisation of P2 leading to the formation of the cyclic P6 were performed, and it was predicted that hexaphosphabenzene would decompose to free P2 with an energy barrier of 13−15.4 kcal mol−1, and would therefore not be observed in the uncomplexed state under normal experimental conditions. The presence of an added solvent, such as ethanol, might lead to the formation of intermolecular hydrogen bonds which may block the destabilizing interaction between phosphorus lone pairs and consequently stabilize P6. The moderate barrier suggests that hexaphosphabenzene could be synthesized from a [2+2+2] cycloaddition of three P2 molecules. Currently, this is a synthetic endeavour which remains to be conquered.

Among pnictogen group Lewis acidic compounds, unusual lewis acidity of Lewis acidic antimony compounds have long been exploited as both stable conjugate acids of non-coordinating anions, and strong Lewis acid counterparts of well-known superacids. Also, Lewis-acidic antimony compounds have recently been investigated to extend the chemistry of boron because of the isolobal analogy between the vacant p orbital of borane and σ*(Sb–X) orbitals of stiborane, and the similar electronegativities of antimony (2.05) and boron (2.04).

<span class="mw-page-title-main">9-Borafluorene</span> Class of chemical compounds

9-borafluorenes are a class of boron-containing heterocycles consisting of a tricyclic system with a central BC4 ring with two fused arene groups. 9-borafluorenes can be thought of as a borole with two fused arene rings, or as a trigonal planar boron atom with an empty p orbital bridging two biphenyl rings. However, 9-borafluorenes are generally less reactive than boroles due to less antiaromatic character and Lewis acidity. Containing highly conjugated π systems, 9-borafluorenes possess interesting photophysical properties. In addition, 9-borafluorenes are good Lewis acids. This combination of properties enables potential uses such as in light-emitting materials, solar cells, and sensors for some molecules.

Intrinsic bond orbitals (IBO) are localized molecular orbitals giving exact and non-empirical representations of wave functions. They are obtained by unitary transformation and form an orthogonal set of orbitals localized on a minimal number of atoms. IBOs present an intuitive and unbiased interpretation of chemical bonding with naturally arising Lewis structures. For this reason IBOs have been successfully employed for the elucidation of molecular structures and electron flow along the intrinsic reaction coordinate (IRC). IBOs have also found application as Wannier functions in the study of solids.

<span class="mw-page-title-main">Alexander Boldyrev</span> Russian-American scientist

Alexander I. Boldyrev was a Russian-American computational chemist and R. Gaurth Hansen Professor at Utah State University. Professor Boldyrev is known for his pioneering works on superhalogens, superalkalis, tetracoordinated planar carbon, inorganic double helix, boron and aluminum clusters, and chemical bonding theory, especially aromaticity/antiaromaticity in all-metal structures, and development of the Adaptive Natural Density Partitioning (AdNDP) method.

<span class="mw-page-title-main">Superelectrophilic anion</span> Superelectrophilic anions

Superelectrophilic anions are a class of molecular ions that exhibit highly electrophilic reaction behavior despite their overall negative charge. Thus, they are even able to bind the unreactive noble gases or molecular nitrogen at room temperature. The only representatives known so far are the fragment ions of the type [B12X11] derived from the closo-dodecaborate dianions [B12X12]2–. X represents a substituent connected to a boron atom (cf. Fig. 1). For this reason, the following article deals exclusively with superelectrophilic anions of this type.

<span class="mw-page-title-main">Borepin</span> Aromatic, boron-containing rings

Borepins are a class of boron-containing heterocycles used in main group chemistry. They consist of a seven-membered unsaturated ring with a tricoordinate boron in it. Simple borepins are analogues of cycloheptatriene, which is a seven-membered ring containing three carbon-carbon double bonds, each of which contributes 2π electrons for a total of 6π electrons. Unlike other seven-membered systems such as silepins and phosphepins, boron has a vacant p-orbital that can interact with the π and π* orbitals of the cycloheptatriene. This leads to an isoelectronic state akin to that of the tropylium cation, aromatizing the borepin while also allowing it to act as a Lewis acid. The aromaticity of borepin is relatively weak compared to traditional aromatics such as benzene or even cycloheptatriene, which has led to the synthesis of many fused, π-conjugated borepin systems over the years. Simple and complex borepins have been extensively studied more recently due to their high fluorescence and potential applications in technologies like organic light-emitting diodes (OLEDs) and photovoltaic cells.

<span class="mw-page-title-main">Boraacenes</span> Boron containing acene compounds

Boraacenes are polycyclic aromatic hydrocarbons containing at least one boron atom. Structurally, they are related to acenes, linearly fused benzene rings. However, the boron atom is electron deficient and may act as a Lewis Acid when compared to carbon. This results in slightly less negative charge within the ring, smaller HOMO-LUMO gaps, as well as differences in redox chemistry when compared to their acene analogues. When incorporated into acenes, Boron maintains the planarity and aromaticity of carbon acenes, while adding an empty p-orbital, which can be utilized for the fine tuning of organic semiconductor band gaps. Due to this empty p orbital, however, it is also highly reactive when exposed to nucleophiles like water or normal atmosphere, as it will readily be attacked by oxygen, which must be addressed to maintain its stability.

<span class="mw-page-title-main">Diphosphadiboretanes</span> Chemical compound

1,3-Diphospha-2,4-diboretanes, or B2P2, is a class of 4-member cyclic compounds of alternating boron and phosphorus atoms. They are often found as dimers during the synthesis of boraphosphenes (RB=PR'). Compounds can exhibit localized singlet diradical character (diradicaloid) between the boron atoms in the solution and solid state.

<span class="mw-page-title-main">Aluminylene</span>

Aluminylenes are a sub-class of aluminium(I) compounds that feature singly-coordinated aluminium atoms with a lone pair of electrons. As aluminylenes exhibit two unoccupied orbitals, they are not strictly aluminium analogues of carbenes until stabilized by a Lewis base to form aluminium(I) nucleophiles. The lone pair and two empty orbitals on the aluminium allow for ambiphilic bonding where the aluminylene can act as both an electrophile and a nucleophile. Aluminylenes have also been reported under the names alumylenes and alanediyl.

While the first dinitrogen complex was discovered in 1965, reports of dinitrogen complexes of main group elements have been significantly limited relative to their transition metal complex analogues. Examples span both the s- and p- blocks, with particular breakthroughs in Groups 1, 2, 13, 14, and 15 in the periodic table. These complexes tend to involve somewhat weak interactions between N2 and the main group atoms it binds. The formation of such compounds is of interest to chemists who seek to extend transition metal reactivity into the main group elements and especially those interested in using main group-mediated N2 activation.

References

  1. McKee, Michael L.; Buehl, Michael; Charkin, Oleg P.; Schleyer, Paul v. R. (1993-10-01). "Theoretical investigation of four-center two-electron bonding involving boron derivatives". Inorganic Chemistry. 32 (21): 4549–4554. doi:10.1021/ic00073a014. ISSN   0020-1669.
  2. Korkin, Anatoli A.; Schleyer, Paul v. R.; McKee, Michael L. (1995-02-01). "Theoretical ab Initio Study of Neutral and Charged B3Hn (n = 3-9) Species. Importance of Aromaticity in Determining the Structural Preferences". Inorganic Chemistry. 34 (4): 961–977. doi:10.1021/ic00108a031. ISSN   0020-1669.
  3. Yang, C. L; Zhu, Z. H (2001-08-27). "The ground singlet and low-lying triplet electronic states of B3+". Journal of Molecular Structure: THEOCHEM. 571 (1): 225–229. doi:10.1016/S0166-1280(01)00558-9. ISSN   0166-1280.
  4. 1 2 3 Zhai, Hua-Jin; Wang, Lai-Sheng; Alexandrova, Anastassia N.; Boldyrev, Alexander I.; Zakrzewski, Vyacheslav G. (2003-11-01). "Photoelectron Spectroscopy and ab Initio Study of B3- and B4- Anions and Their Neutrals". The Journal of Physical Chemistry A. 107 (44): 9319–9328. Bibcode:2003JPCA..107.9319Z. doi:10.1021/jp0357119. ISSN   1089-5639.
  5. 1 2 Hanley, Luke.; Anderson, Scott L. (1987-09-01). "Production and collision-induced dissociation of small boron cluster ions". The Journal of Physical Chemistry. 91 (20): 5161–5163. doi:10.1021/j100304a007. ISSN   0022-3654.
  6. 1 2 Hanley, Luke; Anderson, Scott L. (1988-09-01). "Oxidation of small boron cluster ions (B+1–13) by oxygen". The Journal of Chemical Physics. 89 (5): 2848–2860. Bibcode:1988JChPh..89.2848H. doi:10.1063/1.454989. ISSN   0021-9606.
  7. 1 2 3 4 5 6 Kupfer, Thomas; Braunschweig, Holger; Radacki, Krzysztof (2015-12-07). "The Triboracyclopropenyl Dianion: The Lightest Possible Main-Group-Element Hückel π Aromatic". Angewandte Chemie International Edition. 54 (50): 15084–15088. doi:10.1002/anie.201508670. PMID   26530854.
  8. 1 2 3 Czekner, Joseph; Cheung, Ling Fung; Kocheril, G. Stephen; Kulichenko, Maksim; Boldyrev, Alexander I.; Wang, Lai-Sheng (2019-06-24). "High-Resolution Photoelectron Imaging of IrB 3 − : Observation of a π-Aromatic B 3 + Ring Coordinated to a Transition Metal". Angewandte Chemie International Edition. 58 (26): 8877–8881. doi:10.1002/anie.201902406. PMID   31021049. S2CID   131776294.
  9. Chen, Xin; Chen, Teng-Teng; Li, Wan-Lu; Lu, Jun-Bo; Zhao, Li-Juan; Jian, Tian; Hu, Han-Shi; Wang, Lai-Sheng; Li, Jun (2019-01-07). "Lanthanides with Unusually Low Oxidation States in the PrB 3 – and PrB 4 – Boride Clusters". Inorganic Chemistry. 58 (1): 411–418. doi:10.1021/acs.inorgchem.8b02572. ISSN   0020-1669. PMID   30543295. S2CID   56148031.
  10. 1 2 Chen, Qiang; Zhao, Yan-Xia; Jiang, Li-Xue; Li, Hai-Fang; Chen, Jiao-Jiao; Zhang, Ting; Liu, Qing-Yu; He, Sheng-Gui (2018). "Thermal activation of methane by vanadium boride cluster cations VB n + ( n = 3–6)". Physical Chemistry Chemical Physics. 20 (7): 4641–4645. Bibcode:2018PCCP...20.4641C. doi:10.1039/C8CP00071A. ISSN   1463-9076. PMID   29379936.
  11. Jian, Tian; Chen, Xuenian; Li, Si-Dian; Boldyrev, Alexander I.; Li, Jun; Wang, Lai-Sheng (2019). "Probing the structures and bonding of size-selected boron and doped-boron clusters". Chemical Society Reviews. 48 (13): 3550–3591. doi:10.1039/C9CS00233B. ISSN   0306-0012. PMID   31120469. S2CID   162182837.
  12. Wrackmeyer, Bernd (2016). "A Cyclotriborane Dianion and the Triboron Cation: "Light Ends" of the Hückel Rule". Angewandte Chemie International Edition. 55 (6): 1962–1964. doi:10.1002/anie.201510689. ISSN   1521-3773. PMID   26765534.
  13. Tkachenko, Nikolay V.; Boldyrev, Alexander I. (2019-05-08). "Chemical bonding analysis of excited states using the adaptive natural density partitioning method". Physical Chemistry Chemical Physics. 21 (18): 9590–9596. Bibcode:2019PCCP...21.9590T. doi:10.1039/C9CP00379G. ISSN   1463-9084. PMID   31020963. S2CID   131777283.
  14. Mitoraj, Mariusz P.; Michalak, Artur; Ziegler, Tom (2009-04-14). "A Combined Charge and Energy Decomposition Scheme for Bond Analysis". Journal of Chemical Theory and Computation. 5 (4): 962–975. doi:10.1021/ct800503d. ISSN   1549-9618. PMID   26609605.
  15. Pham, Hung Tan; Lim, Kie Zen; Havenith, Remco W. A.; Nguyen, Minh Tho (2016-04-28). "Aromatic character of planar boron-based clusters revisited by ring current calculations". Physical Chemistry Chemical Physics. 18 (17): 11919–11931. Bibcode:2016PCCP...1811919P. doi:10.1039/C5CP07391J. hdl: 1854/LU-8549871 . ISSN   1463-9084. PMID   26956732. S2CID   205957278.
  16. Himmel, Hans-Jörg (2019-08-19). "Electron-Deficient Triborane and Tetraborane Ring Compounds: Synthesis, Structure, and Bonding". Angewandte Chemie International Edition. 58 (34): 11600–11617. doi:10.1002/anie.201900563. PMID   30786130. S2CID   73514624.
  17. 1 2 Jin, Jiaye; Wang, Guanjun; Zhou, Mingfei; Andrada, Diego M.; Hermann, Markus; Frenking, Gernot (2016-02-05). "The [B 3 (NN) 3 ] + and [B 3 (CO) 3 ] + Complexes Featuring the Smallest π-Aromatic Species B 3 +". Angewandte Chemie International Edition. 55 (6): 2078–2082. doi:10.1002/anie.201509826. PMID   26836340.
  18. Lichtenberger, Dennis L.; Hoppe, Martin L.; Subramanian, Lalitha; Kober, Edward M.; Hughes, Russell P.; Hubbard, John L.; Tucker, David S. (1993-06-01). "Electron distribution and bonding in .eta.3-cyclopropenyl-metal complexes". Organometallics. 12 (6): 2025–2031. doi:10.1021/om00030a011. ISSN   0276-7333.
  19. 1 2 3 Li, Zhuo Zhe; Li, An Yong (2017-07-26). "Monocyclic aromatic compounds BnRgn(n−2)+ of boron and rare gases". Physical Chemistry Chemical Physics. 19 (29): 19109–19119. Bibcode:2017PCCP...1919109L. doi:10.1039/C7CP00316A. ISSN   1463-9084. PMID   28702603.
  20. Lu, Tian; Chen, Feiwu (2012). "Multiwfn: A multifunctional wavefunction analyzer". Journal of Computational Chemistry. 33 (5): 580–592. doi:10.1002/jcc.22885. ISSN   1096-987X. PMID   22162017. S2CID   13508697.
  21. Saha, Ranajit; Pan, Sudip; Mandal, Subhajit; Orozco, Mesías; Merino, Gabriel; Chattaraj, Pratim K. (2016-08-17). "Noble gas supported B3+ cluster: formation of strong covalent noble gas–boron bonds". RSC Advances. 6 (82): 78611–78620. Bibcode:2016RSCAd...678611S. doi:10.1039/C6RA16188J. ISSN   2046-2069.
  22. 1 2 Hamrick, Y. M.; Van Zee, R. J.; Weltner, W. (1992-02-01). "Electron-spin resonance and ground states of the boron and aluminum trimers". The Journal of Chemical Physics. 96 (3): 1767–1775. Bibcode:1992JChPh..96.1767H. doi:10.1063/1.462132. ISSN   0021-9606.
  23. Alexandrova, Anastassia N.; Boldyrev, Alexander I.; Zhai, Hua-Jin; Wang, Lai-Sheng (2006-11-01). "All-boron aromatic clusters as potential new inorganic ligands and building blocks in chemistry". Coordination Chemistry Reviews. 18th Main Group Chemistry. 250 (21): 2811–2866. doi:10.1016/j.ccr.2006.03.032. ISSN   0010-8545.
  24. Yang, Li-ming; Wang, Jian; Ding, Yi-hong; Sun, Chia-chung (2007-08-29). "Investigation of the Typical Triangular Structure B 3 in Boron Chemistry: Insight into Bare All-Boron Clusters Used as Ligands or Building Blocks". The Journal of Physical Chemistry A. 111 (37): 9122–9129. Bibcode:2007JPCA..111.9122Y. doi:10.1021/jp074645y. ISSN   1089-5639. PMID   17725336.
  25. Wang, GuanJun; Chi, ChaoXian; Xing, XiaoPeng; Ding, ChuanFan; Zhou, MingFei (2014-01-01). "A collinear tandem time-of-flight mass spectrometer for infrared photodissociation spectroscopy of mass-selected ions". Science China Chemistry. 57 (1): 172–177. doi:10.1007/s11426-013-4979-5. ISSN   1869-1870. S2CID   195203032.
  26. Lineberger, W. Carl (2013-04-01). "Once upon Anion: A Tale of Photodetachment". Annual Review of Physical Chemistry. 64 (1): 21–36. Bibcode:2013ARPC...64...21L. doi:10.1146/annurev-physchem-032511-143753. ISSN   0066-426X. PMID   23216379.
  27. Truhlar, Donald G.; Hiberty, Philippe C.; Shaik, Sason; Gordon, Mark S.; Danovich, David (2019-09-02). "Orbitals and the Interpretation of Photoelectron Spectroscopy and (e,2e) Ionization Experiments". Angewandte Chemie International Edition. 58 (36): 12332–12338. doi:10.1002/anie.201904609. PMID   31081208. S2CID   153290832.