Trifluoromethylation

Last updated

Trifluoromethylation in organic chemistry describes any organic reaction that introduces a trifluoromethyl group in an organic compound. [1] [2] [3] [4] Trifluoromethylated compounds are of some importance in pharmaceutical industry and agrochemicals. Several notable pharmaceutical compounds have a trifluoromethyl group incorporated: fluoxetine, mefloquine, Leflunomide, nulitamide, dutasteride, bicalutamide, aprepitant, celecoxib, fipronil, fluazinam, penthiopyrad, picoxystrobin, fluridone, norflurazon, sorafenib and triflurazin. A relevant agrochemical is trifluralin. The development of synthetic methods for adding trifluoromethyl groups to chemical compounds is actively pursued in academic research.

Contents

History

The first to investigate trifluoromethyl groups in relationship to biological activity was F. Lehmann in 1927. [5] An early review appeared in 1958. [6] An early synthetic method was developed by Frédéric Swarts in 1892, [7] based on antimony fluoride. In this reaction benzotrichloride was reacted with SbF3 to form PhCF2Cl and PhCF3. In the 1930s Kinetic Chemicals and IG Farben replaced SbF3 with HF. The McLoughlin-Thrower reaction (1968) is an early coupling reaction using iodofluoroalkanes, iodoaromatic compounds and copper. [8] In 1969 Kobayashi & Kumadaki adapted their protocol for trifluoromethylations. [9] [10]

McLoughlin-Thrower reaction.svg
McLoughlin-Thrower reaction (1968)

Reagents

Trifluoromethyltrimethylsilane

Preparation of the trifluoromethyltrimethylsilane was reported by Ingo Ruppert in 1984. [11] In 1989, Prakash and Olah first reported activation of TMSCF3 by fluoride to perform nucleophilic trifluoromethylation of carbonyl compounds. [12] In the same year, Stahly described similar reactions for the synthesis of trifluoromethylated phenols and anilines. [13] Since then TMSCF3 has been widely used as a nucleophilic trifluoromethylating agent. [14] [15]

An example is the trifluoromethylation of cyclohexanone in THF using tetrabutylammonium fluoride. [16]

Cyclohexanol trifluoromethylation.svg
Trifluoromethylation using

trifluoromethyltrimethylsilane [16]

The substrates can be aryl halides. [17] [18] Potassium (trifluoromethyl)trimethoxyborate for this purpose has been synthesised from B(OMe)3, CF3SiMe3 and KF. [19] Aryl functionalization by C-H activation has also been reported. [20] [21]

Sodium trifluoroacetate

Sodium trifluoroacetate as a reagent for trifluoromethylations was introduced by Matsui in 1981. In the original scope the substrate was an aromatic halide and the metal salt copper(I)iodide. [22] [23]

Trifluoromethane

Fluoroform (CF3H) has been employed as a trifluoromethylation reagent for aldehydes in combination with a strong base. [24]

Trifluoromethylation fluoroform folleas 1998.svg
Trifluoromethylation fluoroform folleas 1998 [24]

Trifluoroiodomethane

Trifluoroiodomethane is a reagent in aromatic coupling reactions. It has also been used with enones, for example with chalcone, a reaction catalysed by diethyl zinc and Wilkinson's catalyst: [25]

Trifluoromethylation enones.svg
Trifluoromethylation using diethyl zinc and Wilkinson's catalyst [25]

Trifluoromethyl sulfone

Trifluoromethyl sulfone (PhSO2CF3) and trifluoromethyl sulfoxide (PhSOCF3) can be used for trifluoromethylations of electrophiles [26]

Trifluoromethanesulfonyl chloride

Trifluoromethanesulfonyl chloride (or triflyl chloride, CF3SO2Cl) can be used in a highly efficient method to introduce a trifluoromethyl group to aromatic and heteroaromatic systems, including known pharmaceuticals such as Lipitor. The chemistry is general and mild, and uses a photoredox catalyst and a light source at room temperature. [27]

Photoredox trifluoromethylation.png

Sodium trifluoromethanesulfinate

Sodium trifluoromethanesulfinate (CF3SO2Na) as a trifluoromethylation reagent was introduced by Langlois in 1991. [28] The reaction requires t-butyl hydroperoxide and generally a metal and proceeds through a radical mechanism. The reagent has been applied with heterocyclic substrates [29]

Trifluorination Baran Langlois reagent 2011.svg
Trifluorination Langlois reagent 2011 [29]

Umemoto reagents

Umemoto reagents are (trifluoromethyl)dibenzoheterocyclic salts, such as 5-(trifluoromethyl)dibenzothiophenium triflate and 5-(trifluoromethyl)dibenzothiophenium tetrafluoroborate. [30] [31]

Trifluoromethyl-metal reagents

Many CF3-containing metal complexes have been prepared, and some are useful for trifluoromethylation. The most obvious reagent is CF3Li, which can be generated by lithium-iodide exchange. This compound is however unstable even at low temperatures. It degrades to lithium fluoride and difluorocarbene. Trifluoromethyl copper(I) reagents are more useful. These reagents are generated in situ by reaction of CF3I with copper powder in polar solvents. [32] Hg(CF3)2, prepared by decarboxylation of the trifluoroacetate, has proven useful for the trifluoromethylation of other metals. [33]

Reaction types

Aromatic coupling reactions

In coupling reactions between aromatic compounds and metal-trifluoromethyl complexes the metal is usually copper, Pd and Ni are less prominent. [1] The reactions are stoichiometric or catalytic. In the McLoughlin-Thrower reaction (1962) iodobenzene reacts with trifluoroiodomethane (CF3I) and copper powder in dimethylformamide at 150 °C to trifluoromethylbenzene. The intermediate in this reaction type is a perfluoromethyl-metal complex.

A palladium acetate catalysed reaction described in 1982 used zinc powder with the main intermediate believed to be CF3ZnI with Pd(0) is the active catalyst. [34] [35] The first copper catalysed coupling was reported in 2009 and based on an iodoarene, a trifluoromethylsilane, copper iodide and 1,10-phenanthroline. [36] Variations include another CF3 donor potassium (trifluoromethyl)trimethoxyborate, [37] the use of aryl boronic acids [38] [39] or the use of a trifluoromethyl sulfonium salt [40] or the use of a trifluoromethylcopper(I) phenanthroline complex. [41] A catalytic palladium catalysed reaction was reported in 2010 using aryl halides, (trifluoromethyl)triethylsilane and allylpalladium chloride dimer [42]

Aromatic trifluoromethylation Kitazume 1982.svg Aromatic trifluoromethylation Oishi 2009.svg
Aromatic trifluoromethylation Kitazume 1982 [34] Aromatic catalytic

trifluoromethylation Oishi 2009 [36]

Radical trifluoromethylation

In radical trifluoromethylation the active species is the trifluoromethyl free radical. [43] Reagents such as bromotrifluoromethane and haloform have been used for this purpose [44] [45] [46] but in response to the Montreal Protocol alternatives such as trifluoroiodomethane have been developed as replacement. [47] [48] One particular combination is CF3I / triethylborane [49] [50] Other reagents that generate the CF3 radical are sodium trifluoromethanesulfinate and bis(trifluoroacetyl) peroxide.

Trifluorododecanone synthesis 1991.svg
Trifluoromethylation using CF3I and triethylborane.

The base is 2,6-lutidine [49]

In the CF3 radical the fluorine atom is an electron-withdrawing group via the inductive effect but also a weak pi donor through interaction of the fluorine lone pair with the radical center's SOMO. Compared to the methyl radical the CF3 radical is pyramidal (angle 107.8 °C ) with a large inversion barrier, electrophilic and also more reactive. In reaction with styrene it is 440 times more reactive. [51] An early report (1949) describes the photochemical reaction of iodotrifluoromethane with ethylene to 3-iodo-1,1,1-trifluoropropane. [52] Reagents that have been reported for the direct trifluoromethylation of arenes are CF3I, CF3Br (thermal or photochemical), silver trifluoroacetate/TiO2 (photochemical) and sodium trifluoromethanesulfinate/Cu(OSO2CF3)2/tBuOOH.

Nucleophilic trifluoromethylation

In nucleophilic trifluoromethylation the active species is the CF3 anion. [53] It was, however, widely believed that the trifluoromethyl anion is a transient species and thus cannot be isolated or observed in the condensed phase. Contrary to the popular belief, the CF3 anion, with [K(18-crown-6)]+ as a countercation, was produced and characterized by Prakash and coworkers. [54] The challenges associated with observation of CF3 anion are alluded to its strong basic nature and its tendency to form pentacoordinated silicon species, such as [Me3Si(CF3)2] or [Me3Si(F)(CF3)].

The reactivity of fluoroform in combination with a strong base such as t-BuOK with carbonyl compounds in DMF is an example. [53] Here CF3 and DMF form an hemiaminolate adduct ([Me2NCH(O)CF3]K). [24] [55] [56] [57]

Trifluoromethylation methyl fluorosulfonyldifluoroacetate.svg
trifluoromethylation using methyl fluorosulfonyldifluoroacetate.

The intermediate is CF3Cu [58]

Electrophilic trifluoromethylation

In electrophilic trifluoromethylation the active trifluoromethyl donor group carries a positive charge. [59] [60] Production of an CF3+ cation has been described as "extremely hard" [61] The first relevant reagent, a diaryl(trifluoromethyl) sulfonium salt (Ar2S+CF3SbF6) was developed in 1984 by reaction of an aryltrifluoromethyl sulfoxide 1 with SF3+SbF6 followed by reaction with an electron-rich arene. [62] The reagent was used in trifluoromethylation of a thiophenolate. S-(trifluoromethyl)dibenzothiophenium tetrafluoroborate is a commercially available and known trifluoromethylation reagent based on the same principle first documented in 1990. [63] [64] In this type of compound sulfur has been replaced by oxygen, selenium and tellurium. Examples of substrates that have been investigated are pyridine, aniline, triphenylphosphine and the lithium salt of phenylacetylene.

Electrophilic Perfluoroalkylating Agents
5-(Trifluoromethyl)dibenzothiophenium trifluoromethanesulfonate.svg 5-(Trifluoromethyl)dibenzothiophenium tetrafluoroborate.svg 3,3-Dimethyl-1-(trifluoromethyl)-1,2-benziodoxole.svg
5-(Trifluoromethyl)dibenzothiophenium
trifluoromethanesulfonate
5-(Trifluoromethyl)dibenzothiophenium tetrafluoroborate3,3-Dimethyl-1-(trifluoromethyl)-1,2-benziodoxole

Another group of trifluoromethyl donors are hypervalent iodine(III) [65] –CF3 reagents for example 3,3-dimethyl-1-(trifluoromethyl)-1,2-benziodoxole. [66] [67] [68] [69] Some of these are known as Togni reagents, such as Togni reagent II. Substrates are thiols, alcohols, phosphines, (hetero) arenes, [70] unactivated olefins [71] and unsaturated carboxylic acids. [72]

Togni reagent.svg
Trifluoromethylation at a thiol group using hypervalent iodine [70]

The reaction mechanism of electrophilic trifluoromethylations has been described as controversial with polar substitution or single electron transfer as likely candidates. [61]

Asymmetric trifluoromethylation

In asymmetric trifluoromethylation the trifluoromethyl group is added to the substrate in an enantioselective way. [73] [74] Ruppert's reagent has been used for this purpose in an asymmetric induction approach to functionalise chiral amino acid derivates, [75] saccharides, [76] and steroids. Because Ruppert's reagent requires a tetraalkylammonium fluoride, chiral ammonium fluorides have been employed in asymmetric catalysis. [77] [78] In the field of electrophilic trifluoromethylation an early contribution involved reaction of a metal enolate with a trifluoromethyl chalcogen salt in presence of a chiral boron catalyst. [79]

Asymmetic trifluorination Iseki 1994.svg Asymmetic trifluorination Caron 2003.svg
Asymmetric trifluoromethylation Iseki 1994 [77] Asymmetric trifluormethylation Caron 2003 [78]

More recent examples of highly enantioselective methods for the α-trifluoromethylation of carbonyls are available through enamine catalysis of aldehydes (photoredox [80] or iodonium [81] ), copper catalysis of β-ketoesters, [82] and radical addition to zirconium enolates. [83]

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds, also known as "mono- and polycyclic aromatic hydrocarbons", are organic compounds containing one or more aromatic rings. The word "aromatic" originates from the past grouping of molecules based on smell, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation with their smell.

<span class="mw-page-title-main">Organolithium reagent</span> Chemical compounds containing C–Li bonds

In organometallic chemistry, organolithium reagents are chemical compounds that contain carbon–lithium (C–Li) bonds. These reagents are important in organic synthesis, and are frequently used to transfer the organic group or the lithium atom to the substrates in synthetic steps, through nucleophilic addition or simple deprotonation. Organolithium reagents are used in industry as an initiator for anionic polymerization, which leads to the production of various elastomers. They have also been applied in asymmetric synthesis in the pharmaceutical industry. Due to the large difference in electronegativity between the carbon atom and the lithium atom, the C−Li bond is highly ionic. Owing to the polar nature of the C−Li bond, organolithium reagents are good nucleophiles and strong bases. For laboratory organic synthesis, many organolithium reagents are commercially available in solution form. These reagents are highly reactive, and are sometimes pyrophoric.

In organic chemistry, an aryl halide is an aromatic compound in which one or more hydrogen atoms, directly bonded to an aromatic ring are replaced by a halide. The haloarene are different from haloalkanes because they exhibit many differences in methods of preparation and properties. The most important members are the aryl chlorides, but the class of compounds is so broad that there are many derivatives and applications.

The Sandmeyer reaction is a chemical reaction used to synthesize aryl halides from aryl diazonium salts using copper salts as reagents or catalysts. It is an example of a radical-nucleophilic aromatic substitution. The Sandmeyer reaction provides a method through which one can perform unique transformations on benzene, such as halogenation, cyanation, trifluoromethylation, and hydroxylation.

<span class="mw-page-title-main">Bamford–Stevens reaction</span> Synthesis of alkenes by base-catalysed decomposition of tosylhydrazones

The Bamford–Stevens reaction is a chemical reaction whereby treatment of tosylhydrazones with strong base gives alkenes. It is named for the British chemist William Randall Bamford and the Scottish chemist Thomas Stevens Stevens (1900–2000). The usage of aprotic solvents gives predominantly Z-alkenes, while protic solvent gives a mixture of E- and Z-alkenes. As an alkene-generating transformation, the Bamford–Stevens reaction has broad utility in synthetic methodology and complex molecule synthesis.

The Hiyama coupling is a palladium-catalyzed cross-coupling reaction of organosilanes with organic halides used in organic chemistry to form carbon–carbon bonds. This reaction was discovered in 1988 by Tamejiro Hiyama and Yasuo Hatanaka as a method to form carbon-carbon bonds synthetically with chemo- and regioselectivity. The Hiyama coupling has been applied to the synthesis of various natural products.

The Reformatsky reaction is an organic reaction which condenses aldehydes or ketones with α-halo esters using metallic zinc to form β-hydroxy-esters:

<span class="mw-page-title-main">Weinreb ketone synthesis</span> Chemical reaction

The Weinreb ketone synthesis or Weinreb–Nahm ketone synthesis is a chemical reaction used in organic chemistry to make carbon–carbon bonds. It was discovered in 1981 by Steven M. Weinreb and Steven Nahm as a method to synthesize ketones. The original reaction involved two subsequent nucleophilic acyl substitutions: the conversion of an acid chloride with N,O-Dimethylhydroxylamine, to form a Weinreb–Nahm amide, and subsequent treatment of this species with an organometallic reagent such as a Grignard reagent or organolithium reagent. Nahm and Weinreb also reported the synthesis of aldehydes by reduction of the amide with an excess of lithium aluminum hydride.

<span class="mw-page-title-main">Organozinc chemistry</span>

Organozinc chemistry is the study of the physical properties, synthesis, and reactions of organozinc compounds, which are organometallic compounds that contain carbon (C) to zinc (Zn) chemical bonds.

<span class="mw-page-title-main">Organocopper chemistry</span> Compound with carbon to copper bonds

Organocopper chemistry is the study of the physical properties, reactions, and synthesis of organocopper compounds, which are organometallic compounds containing a carbon to copper chemical bond. They are reagents in organic chemistry.

The Wurtz–Fittig reaction is the chemical reaction of aryl halides with alkyl halides and sodium metal in the presence of dry ether to give substituted aromatic compounds. Charles Adolphe Wurtz reported what is now known as the Wurtz reaction in 1855, involving the formation of a new carbon-carbon bond by coupling two alkyl halides. Work by Wilhelm Rudolph Fittig in the 1860s extended the approach to the coupling of an alkyl halide with an aryl halide. This modification of the Wurtz reaction is considered a separate process and is named for both scientists.

In organic synthesis, cyanation is the attachment or substitution of a cyanide group on various substrates. Such transformations are high-value because they generate C-C bonds. Furthermore nitriles are versatile functional groups.

<span class="mw-page-title-main">Trifluoromethyltrimethylsilane</span> Chemical compound

Trifluoromethyltrimethylsilane (known as Ruppert-Prakash reagent, TMSCF3) is an organosilicon compound with the formula CF3Si(CH3)3. It is a colorless liquid. The compound is a reagent used in organic chemistry for the introduction of the trifluoromethyl group. The compound was first prepared in 1984 by Ingo Ruppert and further developed as a reagent by G. K. Surya Prakash.

Electrophilic amination is a chemical process involving the formation of a carbon–nitrogen bond through the reaction of a nucleophilic carbanion with an electrophilic source of nitrogen.

<span class="mw-page-title-main">Reductions with samarium(II) iodide</span>

Reductions with samarium(II) iodide involve the conversion of various classes of organic compounds into reduced products through the action of samarium(II) iodide, a mild one-electron reducing agent.

<span class="mw-page-title-main">Sodium trifluoromethanesulfinate</span> Chemical compound

Sodium trifluoromethanesulfinate (CF3SO2Na) is the sodium salt of trifluoromethanesulfinic acid. Together with t-butyl hydroperoxide, an oxidant, this compound was found to be a suitable reagent for introducing trifluoromethyl groups onto electron-rich aromatic compounds by Langlois; this reagent is also known as the Langlois reagent. This reaction operates via a free radical mechanism.

Radical fluorination is a type of fluorination reaction, complementary to nucleophilic and electrophilic approaches. It involves the reaction of an independently generated carbon-centered radical with an atomic fluorine source and yields an organofluorine compound.

<span class="mw-page-title-main">Togni reagent II</span> Chemical compound

Togni reagent II is a chemical compound used in organic synthesis for direct electrophilic trifluoromethylation.

In organometallic chemistry, metal–halogen exchange is a fundamental reaction that converts an organic halide into an organometallic product. The reaction commonly involves the use of electropositive metals and organochlorides, bromides, and iodides. Particularly well-developed is the use of metal–halogen exchange for the preparation of organolithium compounds.

<span class="mw-page-title-main">Hafnium trifluoromethanesulfonate</span> Chemical compound

Hafnium(IV) triflate or hafnium trifluoromethansulfonate is an inorganic substance with the idealized formula Hf(OSO2CF3)4, also written as Hf(OTf)4. Hafnium triflate is used as an impure mixture as a catalyst. Hafnium (IV) has an ionic radius of intermediate range (Al < Ti < Hf < Zr < Sc < Ln) and has an oxophilic hard character typical of group IV metals. This solid is a stronger Lewis acid than its typical precursor hafnium tetrachloride, HfCl4, because of the strong electron-withdrawing nature of the four triflate groups, which makes it a great Lewis acid and has many uses including as a great catalyst at low Lewis acid loadings for electrophilic aromatic substitution and nucleophilic substitution reactions.

References

  1. 1 2 Tomashenko, O. A.; Grushin, V. V. (2011). "Aromatic Trifluoromethylation with Metal Complexes". Chemical Reviews. 111 (8): 4475–4521. doi:10.1021/cr1004293. PMID   21456523.
  2. Furuya, T.; Kamlet, A. S.; Ritter, T. (2011). "Catalysis for fluorination and trifluoromethylation". Nature. 473 (7348): 470–477. Bibcode:2011Natur.473..470F. doi:10.1038/nature10108. PMC   3119199 . PMID   21614074.
  3. Besset, T.; Schneider, C. D.; Cahard, D. (2012). "Tamed Arene and Heteroarene Trifluoromethylation". Angewandte Chemie International Edition. 51 (21): 5048–5050. doi:10.1002/anie.201201012. PMID   22488902.
  4. Alonso, C. N.; Martínez De Marigorta, E.; Rubiales, G.; Palacios, F. (2015). "Carbon Trifluoromethylation Reactions of Hydrocarbon Derivatives and Heteroarenes". Chemical Reviews. 115 (4): 1847–1935. doi:10.1021/cr500368h. PMID   25635524.
  5. Lehmann, F. "Chemical constitution and activity. Aromatic fluorine compounds." Arch. exp. Pathol. Pharmakol 130 (1928): 250-255.
  6. Yale, H. L. (1959). "The Trifluoromethyl Group in Medical Chemistry". Journal of Medicinal and Pharmaceutical Chemistry. 1 (2): 121–133. doi:10.1021/jm50003a001. PMID   13665284.
  7. Swarts (1892). Acad. Roy. Belg. 3 (24): 474.{{cite journal}}: Missing or empty |title= (help)
  8. McLoughlin, V. C. R.; Thrower, J. (1969). "A route to fluoroalkyl-substituted aromatic compounds involving fluoroalkylcopper intermediates". Tetrahedron. 25 (24): 5921–5940. doi:10.1016/S0040-4020(01)83100-8.
  9. Kobayashi, Y.; Kumadaki, I. (1969). "Trifluoromethylation of aromatic compounds". Tetrahedron Letters. 10 (47): 4095–4096. doi:10.1016/S0040-4039(01)88624-X.
  10. Folléas, B. ̂T.; Marek, I.; Normant, J. F.; Saint-Jalmes, L. (2000). "Fluoroform: An Efficient Precursor for the Trifluoromethylation of Aldehydes". Tetrahedron. 56 (2): 275–283. doi:10.1016/S0040-4020(99)00951-5.
  11. Ruppert, Ingo; Schlich, Klaus; Volbach, Wolfgang (January 1984). "Die ersten CF3-substituierten organyl(chlor)silane". Tetrahedron Letters. 25 (21): 2195–2198. doi:10.1016/S0040-4039(01)80208-2.
  12. Prakash, G. K. Surya; Krishnamurti, Ramesh; Olah, George A. (January 1989). "Synthetic methods and reactions. 141. Fluoride-induced trifluoromethylation of carbonyl compounds with trifluoromethyltrimethylsilane (TMS-CF3). A trifluoromethide equivalent". Journal of the American Chemical Society. 111 (1): 393–395. doi:10.1021/ja00183a073.
  13. Stahly, G. Patrick; Bell, Donald R. (June 1989). "A new method for synthesis of trifluoromethyl-substituted phenols and anilines". The Journal of Organic Chemistry. 54 (12): 2873–2877. doi:10.1021/jo00273a020.
  14. G. K. Surya Prakash; Andrei K. Yudin (1997). "Perfluoroalkylation with Organosilicon Reagents". Chemical Reviews. 97 (3): 757–786. doi:10.1021/cr9408991. PMID   11848888.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  15. Xiao Liu, Cong Xu, Mang Wang, and Qun Liu (2015). "Trifluoromethyltrimethylsilane: Nucleophilic Trifluoromethylation and Beyond". Chemical Reviews. 115 (2): 683–730. doi:10.1021/cr400473a. PMID   24754488.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  16. 1 2 Ramaiah, Pichika; Krishnamurti, Ramesh; K. Surya Prakash, G. (1995). "1-TRIFLUOROMETHYL-1-CYCLOHEXANOL". Organic Syntheses. 72 (72): 232. doi:10.15227/orgsyn.072.0232.
  17. Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. (2011). "A Broadly Applicable Copper Reagent for Trifluoromethylations and Perfluoroalkylations of Aryl Iodides and Bromides". Angewandte Chemie. 123 (16): 3877–3882. Bibcode:2011AngCh.123.3877M. doi:10.1002/ange.201100633. PMC   3159489 . PMID   21442711.
  18. Oishi, Masahiro; Kondo, Hideaki; Amii, Hideki (2009). "Aromatic trifluoromethylation catalytic in copper". Chemical Communications. 2009 (14): 1909–1911. doi:10.1039/B823249K. PMID   19319442.
  19. Knauber, T.; Arikan, F.; Röschenthaler, G.-V.; Gooßen, L. J. (2011). "Copper-Catalyzed Trifluoromethylation of Aryl Iodides with Potassium (Trifluoromethyl)trimethoxyborate". Chemistry: A European Journal. 17 (9): 2689–2697. doi:10.1002/chem.201002749. PMID   21274956.
  20. Ye, Yingda; Lee, Shin Hee; Sanford, Melanie S. (2011). "Silver-Mediated Trifluoromethylation of Arenes Using TMSCF3". Organic Letters. 13 (20): 5464–5467. doi:10.1021/ol202174a. PMC   3229100 . PMID   21932827.
  21. Hafner, A.; Bräse, S. (2012). "Ortho-Trifluoromethylation of Functionalized Aromatic Triazenes". Angewandte Chemie International Edition. 51 (15): 3713–3715. doi:10.1002/anie.201107414. PMID   22318969.
  22. Matsui, Kiyohide; Tobita, Etsuko; Ando, Midori; Kondo, Kiyosi (1981). "A convenient trifluoromethylation of aromatic halides with sodium trifluoroacetate". Chemistry Letters. 10 (12): 1719–1720. doi: 10.1246/cl.1981.1719 .
  23. Langlois, Bernard R.; Roques, Nicolas (October 2007). "Nucleophilic trifluoromethylation of aryl halides with methyl trifluoroacetate". Journal of Fluorine Chemistry. 128 (10): 1318–1325. doi:10.1016/j.jfluchem.2007.08.001.
  24. 1 2 3 Folléas, Benoît; Marek, Ilan; Normant, Jean-F; Jalmes, Laurent Saint (May 1998). "Fluoroform: an efficient precursor for the trifluoromethylation of aldehydes". Tetrahedron Letters. 39 (19): 2973–2976. doi:10.1016/S0040-4039(98)00391-8.
  25. 1 2 Sato, Kazuyuki; Omote, Masaaki; Ando, Akira; Kumadaki, Itsumaro (2006). "TRIFLUOROMETHYLATION AT THE a-POSITION OF b,b-UNSATURATED KETONES: 4-PHENYL-3-(TRIFLUOROMETHYL)BUTAN-2-ONE". Organic Syntheses. 83 (83): 177. doi: 10.15227/orgsyn.083.0177 .
  26. Prakash, G. K. Surya; Hu, Jinbo; Olah, George A. (September 2003). "Alkoxide- and Hydroxide-Induced Nucleophilic Trifluoromethylation Using Trifluoromethyl Sulfone or Sulfoxide". Organic Letters. 5 (18): 3253–3256. doi:10.1021/ol035045u. PMID   12943400.
  27. Nagib, David A.; MacMillan, David W. C. (8 December 2011). "Trifluoromethylation of arenes and heteroarenes by means of photoredox catalysis". Nature. 480 (7376): 224–228. Bibcode:2011Natur.480..224N. doi:10.1038/nature10647. PMC   3310175 . PMID   22158245.
  28. Langlois, Bernard R.; Laurent, Eliane; Roidot, Nathalie (December 1991). "Trifluoromethylation of aromatic compounds with sodium trifluoromethanesulfinate under oxidative conditions". Tetrahedron Letters. 32 (51): 7525–7528. doi:10.1016/0040-4039(91)80524-A.
  29. 1 2 Ji, Y.; Brueckl, T.; Baxter, R. D.; Fujiwara, Y.; Seiple, I. B.; Su, S.; Blackmond, D. G.; Baran, P. S. (15 August 2011). "Innate C-H trifluoromethylation of heterocycles". Proceedings of the National Academy of Sciences. 108 (35): 14411–14415. Bibcode:2011PNAS..10814411J. doi: 10.1073/pnas.1109059108 . PMC   3167544 . PMID   21844378.
  30. Zhang, Cai (11 July 2014). "Recent advances in trifluoromethylation of organic compounds using Umemoto's reagents". Organic & Biomolecular Chemistry. 12 (34): 6580–9. doi:10.1039/C4OB00671B. PMID   25011917.
  31. Li, Huiqin (3 September 2012). "Umemoto's Reagent". Synlett. 23 (15): 2289–2290. doi: 10.1055/s-0032-1317176 .
  32. Donald J. Burton, Long Lu "Fluorinated Organometallic Compounds" Topics in Current Chemistry, 1997, Vol. 193, p. 45.
  33. Reint Eujen "Bis(Trifluoromethyl)Mercury" 1986, volume 24, p. 52. doi : 10.1002/9780470132555.ch16
  34. 1 2 Kitazume, Tomoya; Ishikawa, Nobuo (1982). "Palladium-Catalyzed Cross-Coupling Reactions Between Allyl, Vinyl or Aryl Halide and Perfluoroalkyl Iodide with Zinc and Ultrasonic Irradiation". Chemistry Letters. 11 (1): 137–140. doi:10.1246/cl.1982.137.
  35. Kitazume, Tomoya; Ishikawa, Nobuo (1985). "Ultrasound-promoted selective perfluoroalkylation on the desired position of organic molecules". Journal of the American Chemical Society. 107 (18): 5186–5191. doi:10.1021/ja00304a026.
  36. 1 2 Oishi, M.; Kondo, H.; Amii, H. (2009). "Aromatic trifluoromethylation catalytic in copper". Chem. Commun. 2009 (14): 1909–1911. doi:10.1039/B823249K. PMID   19319442.
  37. Knauber, T.; Arikan, F.; Roschenthaler, G.-V.; Gooßen, L. J. (2011). "Copper-catalyzed trifluoromethylation of aryl iodides with potassium (trifluoromethyl) trimethoxyborate". Chem. Eur. J. 17 (9): 2689–2697. doi:10.1002/chem.201002749. PMID   21274956.
  38. Chu, L.; Qing, F.-L. (2010). "Copper-mediated oxidative trifluoromethylation of boronic acids". Org. Lett. 12 (21): 5060–5063. doi:10.1021/ol1023135. PMID   20923196.
  39. Senecal, Todd D.; Parsons, Andrew T.; Buchwald, Stephen L. (18 February 2011). "Room Temperature Aryl Trifluoromethylation via Copper-Mediated Oxidative Cross-Coupling". The Journal of Organic Chemistry. 76 (4): 1174–1176. doi:10.1021/jo1023377. PMC   3093444 . PMID   21235259.
  40. Cheng-, Cheng-Pan; Zhang, Pan; Wang, Ling; et al. (2011). "Copper-mediated trifluoromethylation of heteroaromatic compounds by trifluoromethyl sulfonium salts". Angew. Chem. Int. Ed. 50 (8): 1896–1900. doi:10.1002/anie.201006823. PMID   21328665.
  41. Morimoto, H.; Tsubogo, T.; Litvinas, N. D.; Hartwig, J. F. (2011). "A broadly applicable copper reagent for trifluoromethylations and perfluoroalkylations of aryl iodides and bromides". Angew. Chem. Int. Ed. 50 (16): 3793–3798. doi:10.1002/anie.201100633. PMC   3159489 . PMID   21442711.
  42. Cho, E. J.; Senecal, T. D.; Kinzel, T.; Zhang, Y.; Watson, D. A.; Buchwald, S. L. (24 June 2010). "The Palladium-Catalyzed Trifluoromethylation of Aryl Chlorides". Science. 328 (5986): 1679–1681. Bibcode:2010Sci...328.1679C. doi:10.1126/science.1190524. PMC   3005208 . PMID   20576888.
  43. Ma, Jun-An; Cahard, Dominique (September 2007). "Strategies for nucleophilic, electrophilic, and radical trifluoromethylations". Journal of Fluorine Chemistry. 128 (9): 975–996. doi:10.1016/j.jfluchem.2007.04.026.
  44. Andrieux, Claude P.; Gelis, Laurence; Saveant, Jean-Michel (January 1989). "Unusual reactions resulting from the addition on olefins of trifluoromethyl radicals obtained from dissociative electron transfer between electrochemically generated aromatic anion radicals and trifluoromethyl bromide". Tetrahedron Letters. 30 (37): 4961–4964. doi:10.1016/S0040-4039(01)80554-2.
  45. Uneyama, Kenji; Kitagawa, Kouichi; Kitagawa, Kouichi (January 1991). "Perfluoroalkyl-selenation of olefins". Tetrahedron Letters. 32 (3): 375–378. doi:10.1016/S0040-4039(00)92632-7.
  46. Uneyama, Kenji; Kanai, Masatomi (December 1991). "Generation of perfluoroalkyl radicals at low temperature by tellurolate mediated electron transfer". Tetrahedron Letters. 32 (50): 7425–7426. doi:10.1016/0040-4039(91)80124-O.
  47. Rasmusson, Gary H.; Brown, Ronald D.; Arth, Glen E. (March 1975). "Photocatalyzed reaction of trifluoromethyl iodide with steroidal dienones". The Journal of Organic Chemistry. 40 (6): 672–675. doi:10.1021/jo00894a002. PMID   1133630.
  48. Lan-Hargest, Hsuan-Yin; Elliott, John D.; Eggleston, Drake S.; Metcalf, Brian W. (January 1987). "The photochemical rearrangement of a steroidal dienol triflate". Tetrahedron Letters. 28 (52): 6557–6560. doi:10.1016/S0040-4039(00)96912-0.
  49. 1 2 Miura, Katsukiyo; Takeyama, Yoshihiro; Oshima, Koichiro; Utimoto, Kiitiro (1991). "Triethylborane Induced Perfluoroalkylation of Silyl Enol Ethers and Ketene Silyl Acetals with Perfluoroalkyl Iodides". Bulletin of the Chemical Society of Japan. 64 (5): 1542–1553. doi: 10.1246/bcsj.64.1542 .
  50. Miura, Katsukiyo; Taniguchi, Masahiko; Nozaki, Kyoko; Oshima, Koichiro; Utimoto, Kiitiro (January 1990). "Triethylborane induced perfluoroalkylation of silyl enol ethers or germyl enol ethers with perfluoroalkyl iodides". Tetrahedron Letters. 31 (44): 6391–6394. doi:10.1016/S0040-4039(00)97073-4.
  51. Studer, Armido (3 September 2012). "A "Renaissance" in Radical Trifluoromethylation". Angewandte Chemie International Edition. 51 (36): 8950–8958. doi:10.1002/anie.201202624. PMID   22890985.
  52. Haszeldine, R. N. (1949). "603. The reactions of fluorocarbon radicals. Part I. The reaction of iodotrifluoromethane with ethylene and tetrafluoroethylene". Journal of the Chemical Society (Resumed): 2856. doi:10.1039/JR9490002856.
  53. 1 2 Langlois, Bernard R.; Billard, Thierry; Roussel, Solveig (February 2005). "Nucleophilic trifluoromethylation". Journal of Fluorine Chemistry. 126 (2): 173–179. doi:10.1016/j.jfluchem.2004.11.007.
  54. Prof. Dr. G. K. Surya Prakash, Dr. Fang Wang, Zhe Zhang, Prof. Dr. Ralf Haiges, Dr. Martin Rahm, Prof. Dr. Karl O. Christe, Dr. Thomas Mathew, Prof. Dr. George A. Olah (2014). "Long-Lived Trifluoromethanide Anion: A Key Intermediate in Nucleophilic Trifluoromethylations". Angew. Chem. Int. Ed. 53 (43): 11575–11578. doi:10.1002/anie.201406505. PMID   25146595.{{cite journal}}: CS1 maint: multiple names: authors list (link)
  55. Shono, Tatsuya; Ishifune, Manabu; Okada, Toshio; Kashimura, Shigenori (January 1991). "Electroorganic chemistry. 130. A novel trifluoromethylation of aldehydes and ketones promoted by an electrogenerated base". The Journal of Organic Chemistry. 56 (1): 2–4. doi:10.1021/jo00001a002.
  56. Barhdadi, Rachid; Troupel, Michel; Périchon, Jacques (1998). "Coupling of fluoroform with aldehydes using an electrogenerated base". Chemical Communications (12): 1251–1252. doi:10.1039/A801406J.
  57. Large, Sylvie; Roques, Nicolas; Langlois, Bernard R. (December 2000). "Nucleophilic Trifluoromethylation of Carbonyl Compounds and Disulfides with Trifluoromethane and Silicon-Containing Bases". The Journal of Organic Chemistry. 65 (26): 8848–8856. doi:10.1021/jo000150s. PMID   11149825.
  58. Fei, Xiang-Shu; Tian, Wei-Sheng; Ding, Kai; Wang, Yun; Qing-Yun, Chen (2010). "New, Convenient Route for Trifluoromethylation of Steroidal Molecules". Org. Synth. 87 (87): 126. doi: 10.15227/orgsyn.087.0126 .
  59. Shibata, N.; Matsnev, A.; Cahard, D. (2010). "Shelf-stable electrophilic trifluoromethylating reagents: A brief historical perspective". Beilstein Journal of Organic Chemistry. 6: 65. doi:10.3762/bjoc.6.65. PMC   2919266 . PMID   20703379.
  60. Umemoto, T. (1996). "Electrophilic Perfluoroalkylating Agents". Chemical Reviews. 96 (5): 1757–1778. doi:10.1021/cr941149u. PMID   11848810.
  61. 1 2 Barata-Vallejo, S. N.; Lantaño, B.; Postigo, A. (2014). "Recent Advances in Trifluoromethylation Reactions with Electrophilic Trifluoromethylating Reagents". Chemistry: A European Journal. 20 (51): 16806–16829. doi:10.1002/chem.201404005. hdl: 11336/30347 . PMID   25335765.
  62. Yagupolskii, L. M.; Kondratenko, N. V.; Timofeeva, G. N. J. Org. Chem. USSR 1984, 20, 103–106.
  63. Teruo, U.; Sumi, I. (1990). "Power-variable trifluoromethylating agents, (trifluoromethyl)dibenzothio- and -selenophenium salt system". Tetrahedron Letters. 31 (25): 3579–3582. doi:10.1016/S0040-4039(00)94447-2.
  64. Umemoto, T.; Ishihara, S. (1993). "Power-variable electrophilic trifluoromethylating agents. S-, Se-, and Te-(trifluoromethyl)dibenzothio-, -seleno-, and -tellurophenium salt system". Journal of the American Chemical Society. 115 (6): 2156–2164. doi:10.1021/ja00059a009.
  65. Here, iodine is considered to be less electronegative (2.3) than carbon (2.5), per the IUPAC definition that de facto mandates that Allen electronegativity be used; the more commonly encountered Pauling electronegativity scale would imply that the molecule in question would be that of iodine(I), not iodine(III).
  66. Eisenberger, P.; Gischig, S.; Togni, A. (2006). "Novel 10-I-3 Hypervalent Iodine-Based Compounds for Electrophilic Trifluoromethylation". Chemistry: A European Journal. 12 (9): 2579–2586. doi:10.1002/chem.200501052. PMID   16402401.
  67. Kieltsch, I.; Eisenberger, P.; Togni, A. (2007). "Mild Electrophilic Trifluoromethylation of Carbon- and Sulfur-Centered Nucleophiles by a Hypervalent Iodine(III)–CF3 Reagent". Angewandte Chemie International Edition. 46 (5): 754–757. doi:10.1002/anie.200603497. PMID   17154193.
  68. Eisenberger, P.; Kieltsch, I.; Armanino, N.; Togni, A. (2008). "Mild electrophilic trifluoromethylation of secondary and primary aryl- and alkylphosphines using hypervalent iodine(iii)–CF3 reagents". Chemical Communications (13): 1575–7. doi:10.1039/B801424H. PMID   18354804. S2CID   205709340.
  69. Stanek, K.; Koller, R.; Togni, A. (2008). "Reactivity of a 10-I-3 Hypervalent Iodine Trifluoromethylation Reagent with Phenols". The Journal of Organic Chemistry. 73 (19): 7678–7685. doi:10.1021/jo8014825. PMID   18771328.
  70. 1 2 "Preparation of a Trifluoromethyl Transfer Agent: 1-Trifluoromethyl-1,3-Dihydro-3,3-Dimethyl-1,2-Benziodoxole". Organic Syntheses. 88: 168. 2011. doi: 10.15227/orgsyn.088.0168 .
  71. Parsons, A. T.; Buchwald, S. L. (2011). "Copper-Catalyzed Trifluoromethylation of Unactivated Olefins". Angewandte Chemie International Edition. 50 (39): 9120–9123. doi:10.1002/anie.201104053. PMC   3390945 . PMID   21919144.
  72. He, Z.; Luo, T.; Hu, M.; Cao, Y.; Hu, J. (2012). "Copper-Catalyzed Di- and Trifluoromethylation of α,β-Unsaturated Carboxylic Acids: A Protocol for Vinylic Fluoroalkylations". Angewandte Chemie International Edition. 51 (16): 3944–3947. doi:10.1002/anie.201200140. PMID   22407851.
  73. Ma, Jun-An; Cahard, Dominique (December 2004). "Asymmetric Fluorination, Trifluoromethylation, and Perfluoroalkylation Reactions". Chemical Reviews. 104 (12): 6119–6146. doi:10.1021/cr030143e. PMID   15584697.
  74. Lin, Jin-Hong; Xiao, Ji-Chang (November 2014). "Recent advances in asymmetric fluorination and fluoroalkylation reactions via organocatalysis". Tetrahedron Letters. 55 (45): 6147–6155. doi:10.1016/j.tetlet.2014.09.031.
  75. Skiles, Jerry W.; Fuchs, Victor; Miao, Clara; Sorcek, Ronald; Grozinger, Karl G.; Mauldin, Scott C.; Vitous, Jana; Mui, Philip W.; Jacober, Stephen (February 1992). "Inhibition of human leukocyte elastase (HLE) by N-substituted peptidyl trifluoromethyl ketones". Journal of Medicinal Chemistry. 35 (4): 641–662. doi:10.1021/jm00082a005. PMID   1542092.
  76. Bansal, Romesh C.; Dean, Barbara; Hakomori, Sen-itiroh; Toyokuni, Tatsushi (1991). "Synthesis of trifluoromethyl analogue of L-fucose and 6-deoxy-D-altrose". Journal of the Chemical Society, Chemical Communications (12): 796. doi:10.1039/C39910000796.
  77. 1 2 Iseki, Katsuhiko; Nagai, Takabumi; Kobayashi, Yoshiro (May 1994). "Asymmetric trifluoromethylation of aldehydes and ketones with trifluoromethyltrimethylsilane catalyzed by chiral quaternary ammonium fluorides". Tetrahedron Letters. 35 (19): 3137–3138. doi:10.1016/S0040-4039(00)76850-X.
  78. 1 2 Caron, Stéphane; Do, Nga; Arpin, Patrice; Larivée, Alexandre (August 2003). "Enantioselective Addition of a Trifluoromethyl Anion to Aryl Ketones and Aldehydes". Synthesis. 2003 (11): 1693–1698. doi:10.1055/s-2003-40889.
  79. Umemoto, Teruo; Adachi, Kenji (September 1994). "New Method for Trifluoromethylation of Enolate Anions and Applications to Regio-, Diastereo- and Enantioselective Trifluoromethylation". The Journal of Organic Chemistry. 59 (19): 5692–5699. doi:10.1021/jo00098a030.
  80. Nagib, David A.; Scott, Mark E.; MacMillan, David W. C. (2009). "Enantioselective α-Trifluoromethylation of Aldehydes via Photoredox Organocatalysis". Journal of the American Chemical Society. 131 (31): 10875–10877. doi:10.1021/ja9053338. PMC   3310169 . PMID   19722670.
  81. Allen, Anna E.; MacMillan, David W. C. (2010). "The Productive Merger of Iodonium Salts and Organocatalysis: A Non-photolytic Approach to the Enantioselective α-Trifluoromethylation of Aldehydes". Journal of the American Chemical Society. 132 (14): 4986–4987. doi:10.1021/ja100748y. PMC   2880471 . PMID   20297822.
  82. Deng, Qing-Hai; Wadepohl, Hubert; Gade, Lutz H. (2012). "Highly Enantioselective Copper-Catalyzed Electrophilic Trifluoromethylation of β-Ketoesters". Journal of the American Chemical Society. 134 (26): 10769–10772. doi:10.1021/ja3039773. PMID   22693950.
  83. Herrmann, Aaron T.; Smith, Lindsay L.; Zakarian, Armen (2012). "A Simple Method for Asymmetric Trifluoromethylation of-Acyl Oxazolidinones via Ru-Catalyzed Radical Addition to Zirconium Enolates". Journal of the American Chemical Society. 134 (16): 6976–6979. doi:10.1021/ja302552e. PMC   3375393 . PMID   22486383.