Trypanosoma suis

Last updated

Trypanosoma suis
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Phylum: Euglenozoa
Class: Kinetoplastea
Order: Trypanosomatida
Family: Trypanosomatidae
Genus: Trypanosoma
Species:
T. suis
Binomial name
Trypanosoma suis
Ochmann, 1905

Trypanosoma suis is a species of excavate trypanosome in the genus Trypanosoma that causes one form of the surra disease in animals. It infects pigs. It does not infect humans.

Contents

Discovery

Trypanosoma suis was first encountered and described by Ochmann in 1905. He found the parasite in a herd of sick pigs in Dar-es-Salaam, Tanzania. Hence the name as the word suis means pig. Eventually it was lost in consecutive renaming of the parasite until the 1950s.

Rediscovered

Trypanosoma suis is rarely seen and has been lost and rediscovered several times. In the 1950s T. suis is rediscovered in Burundi by two Belgian researchers. [1]

T. suis remains the most rare member of the Salivarian trypanosomes. The only isolated specimen known of this species is kept at the Kenya Trypanosomiasis Research Institute, Nairobi. [2]

The next detection was only made by Hutchinson and Gibson 2015. Newly developed molecular biology methods allowed the discovery of an uncertain Trypanosoma in samples from a few years prior from Tanzania and the Central African Republic. This molecular profile was then applied to blood smear slides from 1952 and 1953, a match was found, and the rediscovery of T. suis was declared. [3] :323:335

Transmission

The parasite is known to be transmitted by the tsetse fly [4] Glossina brevipalpis . [1]

Related Research Articles

<span class="mw-page-title-main">African trypanosomiasis</span> Parasitic disease also known as sleeping sickness

African trypanosomiasis, also known as African sleeping sickness or simply sleeping sickness, is an insect-borne parasitic infection of humans and other animals. It is caused by the species Trypanosoma brucei. Humans are infected by two types, Trypanosoma brucei gambiense (TbG) and Trypanosoma brucei rhodesiense (TbR). TbG causes over 92% of reported cases. Both are usually transmitted by the bite of an infected tsetse fly and are most common in rural areas.

<span class="mw-page-title-main">Trypanosomatida</span> Flagellate kinetoplastid excavate order

Trypanosomatida is a group of kinetoplastid unicellular organisms distinguished by having only a single flagellum. The name is derived from the Greek trypano (borer) and soma (body) because of the corkscrew-like motion of some trypanosomatid species. All members are exclusively parasitic, found primarily in insects. A few genera have life-cycles involving a secondary host, which may be a vertebrate, invertebrate or plant. These include several species that cause major diseases in humans. Some trypanosomatida are intracellular parasites, with the important exception of Trypanosoma brucei.

<span class="mw-page-title-main">Tsetse fly</span> Genus of disease-spreading insects

Tsetse are large, biting flies that inhabit much of tropical Africa. Tsetse flies include all the species in the genus Glossina, which are placed in their own family, Glossinidae. The tsetse is an obligate parasite, which lives by feeding on the blood of vertebrate animals. Tsetse has been extensively studied because of their role in transmitting disease. They have a pronounced economic impact in sub-Saharan Africa as the biological vectors of trypanosomes, causing human and animal trypanosomiasis.

<span class="mw-page-title-main">Trypanosomiasis</span> Medical condition

Trypanosomiasis or trypanosomosis is the name of several diseases in vertebrates caused by parasitic protozoan trypanosomes of the genus Trypanosoma. In humans this includes African trypanosomiasis and Chagas disease. A number of other diseases occur in other animals.

<i>Trypanosoma</i> Genus of parasitic flagellate protist in the Kinetoplastea class

Trypanosoma is a genus of kinetoplastids, a monophyletic group of unicellular parasitic flagellate protozoa. Trypanosoma is part of the phylum Euglenozoa. The name is derived from the Greek trypano- (borer) and soma (body) because of their corkscrew-like motion. Most trypanosomes are heteroxenous and most are transmitted via a vector. The majority of species are transmitted by blood-feeding invertebrates, but there are different mechanisms among the varying species. Trypanosoma equiperdum is spread between horses and other equine species by sexual contact. They are generally found in the intestine of their invertebrate host, but normally occupy the bloodstream or an intracellular environment in the vertebrate host.

<i>Trypanosoma brucei</i> Species of protozoan parasite

Trypanosoma brucei is a species of parasitic kinetoplastid belonging to the genus Trypanosoma that is present in sub-Saharan Africa. Unlike other protozoan parasites that normally infect blood and tissue cells, it is exclusively extracellular and inhabits the blood plasma and body fluids. It causes deadly vector-borne diseases: African trypanosomiasis or sleeping sickness in humans, and animal trypanosomiasis or nagana in cattle and horses. It is a species complex grouped into three subspecies: T. b. brucei, T. b. gambiense and T. b. rhodesiense. The first is a parasite of non-human mammals and causes nagana, while the latter two are zoonotic infecting both humans and animals and cause African trypanosomiasis.

<i>Trypanosoma evansi</i> Contagious protist

Trypanosoma evansi is a parasitic species of excavate trypanosome in the genus Trypanosoma that is one cause of surra in animals. Discovered by Griffith Evans in 1880 at Dera Ismail Khan, it is the first known trypanosome that causes infection. It is a common parasite in India and Iran and causes acute disease in camels and horses, and chronic disease in cattle and buffalo. In Pakistan, it has been found to be the most prevalent trypanosome species in donkeys. It is now established to infect other mammals, including humans.

<span class="mw-page-title-main">David Bruce (microbiologist)</span> Scottish pathologist (1855–1931)

Major-General Sir David Bruce was a Scottish pathologist and microbiologist who made some of the key contributions in tropical medicine. In 1887, he discovered a bacterium, now called Brucella, that caused what was known as Malta fever. In 1894, he discovered a protozoan parasite, named Trypanosoma brucei, as the causative pathogen of nagana.

<span class="mw-page-title-main">Animal trypanosomiasis</span> Parasitic disease of vertebrates

Animal trypanosomiasis, also known as nagana and nagana pest, or sleeping sickness, is a disease of vertebrates. The disease is caused by trypanosomes of several species in the genus Trypanosoma such as T. brucei. T. vivax causes nagana mainly in West Africa, although it has spread to South America. The trypanosomes infect the blood of the vertebrate host, causing fever, weakness, and lethargy, which lead to weight loss and anemia; in some animals the disease is fatal unless treated. The trypanosomes are transmitted by tsetse flies.

Paratransgenesis is a technique that attempts to eliminate a pathogen from vector populations through transgenesis of a symbiont of the vector. The goal of this technique is to control vector-borne diseases. The first step is to identify proteins that prevent the vector species from transmitting the pathogen. The genes coding for these proteins are then introduced into the symbiont, so that they can be expressed in the vector. The final step in the strategy is to introduce these transgenic symbionts into vector populations in the wild. One use of this technique is to prevent mortality for humans from insect-borne diseases. Preventive methods and current controls against vector-borne diseases depend on insecticides, even though some mosquito breeds may be resistant to them. There are other ways to fully eliminate them. “Paratransgenesis focuses on utilizing genetically modified insect symbionts to express molecules within the vector that are deleterious to pathogens they transmit.” The acidic bacteria Asaia symbionts are beneficial in the normal development of mosquito larvae; however, it is unknown what Asais symbionts do to adult mosquitoes.

<i>Trypanosoma congolense</i> Protozoan parasite, cause of nagana

Trypanosoma congolense is a species of trypanosomes and is the major pathogen responsible for the disease nagana in cattle and other animals including sheep, pigs, goats, horses and camels, dogs, as well as laboratory mice. It is the most common cause of nagana in east Africa, but is also a major cause of nagana in west Africa. This parasite is spread by tsetse flies. In its mammalian host, Trypanosoma congolense only lives in blood vessels, and causes in particular anaemia.

A Trypanosomiasis vaccine is a vaccine against trypanosomiasis. No effective vaccine currently exists, but development of a vaccine is the subject of current research.

Wendy Gibson is Professor of Protozoology at University of Bristol, specialising in trypanosomes and molecular parasitology.

<span class="mw-page-title-main">Variant surface glycoprotein</span>

Variant surface glycoprotein (VSG) is a ~60kDa protein which densely packs the cell surface of protozoan parasites belonging to the genus Trypanosoma. This genus is notable for their cell surface proteins. They were first isolated from Trypanosoma brucei in 1975 by George Cross. VSG allows the trypanosomatid parasites to evade the mammalian host's immune system by extensive antigenic variation. They form a 12–15 nm surface coat. VSG dimers make up ~90% of all cell surface protein and ~10% of total cell protein. For this reason, these proteins are highly immunogenic and an immune response raised against a specific VSG coat will rapidly kill trypanosomes expressing this variant. However, with each cell division there is a possibility that the progeny will switch expression to change the VSG that is being expressed. VSG has no prescribed biochemical activity.

Trypanosoma vivax is a parasite species in the genus Trypanosoma. It causes the disease nagana, affecting cattle or wild mammals. It is mainly occurs in West Africa, although it has spread to South America.

Glossina fuscipes is a riverine fly species in the genus Glossina, which are commonly known as tsetse flies. Typically found in sub-Saharan Africa but with a small Arabian range, G. fuscipes is a regional vector of African trypanosomiasis, commonly known as sleeping sickness, that causes significant rates of morbidity and mortality among humans and livestock. Consequently, the species is among several being targeted by researchers for population control as a method for controlling the disease.

A trypanotolerant organism is one which is relatively less affected by trypanosome infestation.

<i>Glossina morsitans</i> Most widespread species of tsetse fly

Glossina morsitans is a species of tsetse fly in the genus Glossina. It is one of the major vectors of Trypanosoma brucei rhodesiense in African savannas.

The Sleeping Sickness Commission was a medical project established by the British Royal Society to investigate the outbreak of African sleeping sickness or African trypanosomiasis in Africa at the turn of the 20th century. The outbreak of the disease started in 1900 in Uganda, which was at the time a protectorate of the British Empire. The initial team in 1902 consisted of Aldo Castellani and George Carmichael Low, both from the London School of Hygiene and Tropical Medicine, and Cuthbert Christy, a medical officer on duty in Bombay, India. From 1903, David Bruce of the Royal Army Medical Corps and David Nunes Nabarro of the University College Hospital took over the leadership. The commission established that species of blood protozoan called Trypanosoma brucei, named after Bruce, was the causative parasite of sleeping sickness.

Keith Roland Matthews,, , is a British cell biologist and parasitologist, currently Professor of Parasite Biology in the School of Biological Sciences at the University of Edinburgh. His research focuses on African trypanosomes, which cause human sleeping sickness and the equivalent cattle disease nagana.

References

  1. 1 2 Van Den Berghe, L.; Zaghi, A. J. (1963). "Wild Pigs as Hosts of Glossina vanhoofi Henrard and Trypanosoma suis Ochmann in the Central African Forest". Nature. 197 (4872). Springer Science and Business Media LLC: 1126–1127. Bibcode:1963Natur.197.1126V. doi:10.1038/1971126a0. ISSN   0028-0836. S2CID   4147646.
  2. Gibson, W. C.; Stevens, J. R.; Mwendia, C. M. T.; Makumi, J. N.; Ngotho, J. M. (2001-07-12). "Unravelling the phylogenetic relationships of African trypanosomes of suids". Parasitology . 122 (6). Cambridge University Press (CUP): 625–631. doi:10.1017/S0031182001007880. ISSN   1469-8161. PMID   11444615. S2CID   22316767.
  3. Hamilton, P.B.; Stevens, J.R. (2017). "17 Classification and phylogeny of Trypanosoma cruzi". In Telleria, Jenny; Tibayrenc, Michel (eds.). American Trypanosomiasis Chagas Disease : One Hundred Years Of Research. Amsterdam, Netherlands: Elsevier. pp. 321–344/xx+826. doi:10.1016/b978-0-12-801029-7.00015-0. ISBN   9780128010297. S2CID   83229726. ISBN   0128010290.
  4. "Tsetse biology, systematics and distribution, techniques". Food and Agriculture Organization of the United Nations. Retrieved 2022-01-04.