Tunable diode laser absorption spectroscopy

Last updated

Tunable diode laser absorption spectroscopy (TDLAS, sometimes referred to as TDLS, TLS or TLAS [1] ) is a technique for measuring the concentration of certain species such as methane, water vapor and many more, in a gaseous mixture using tunable diode lasers and laser absorption spectrometry. The advantage of TDLAS over other techniques for concentration measurement is its ability to achieve very low detection limits (of the order of ppb). Apart from concentration, it is also possible to determine the temperature, pressure, velocity and mass flux of the gas under observation. [2] [3] TDLAS is by far the most common laser based absorption technique for quantitative assessments of species in gas phase.

Contents

Working

A basic TDLAS setup consists of a tunable diode laser light source, transmitting (i.e. beam shaping) optics, optically accessible absorbing medium, receiving optics and detector/s. The emission wavelength of the tunable diode laser, viz. VCSEL, DFB, etc., is tuned over the characteristic absorption lines of a species in the gas in the path of the laser beam. This causes a reduction of the measured signal intensity due to absorption, which can be detected by a photodiode, and then used to determine the gas concentration and other properties as described later. [4]

Different diode lasers are used based on the application and the range over which tuning is to be performed. Typical examples are InGaAsP/InP (tunable over 900 nm to 1.6 μm), InGaAsP/InAsP (tunable over 1.6 μm to 2.2 μm), etc. These lasers can be tuned by either adjusting their temperature or by changing injection current density into the gain medium. While temperature changes allow tuning over 100 cm−1, it is limited by slow tuning rates (a few hertz), due to the thermal inertia of the system. On the other hand, adjusting the injection current can provide tuning at rates as high as ~10 GHz, but it is restricted to a smaller range (about 1 to 2 cm−1) over which the tuning can be performed. The typical laser linewidth is of the order of 10−3 cm−1 or smaller. Additional tuning, and linewidth narrowing, methods include the use of extracavity dispersive optics. [5]

Basic principles

Concentration measurement

The basic principle behind the TDLAS technique is simple. The focus here is on a single absorption line in the absorption spectrum of a particular species of interest. To start, the wavelength of a diode laser is tuned over a particular absorption line of interest and the intensity of the transmitted radiation is measured. The transmitted intensity can be related to the concentration of the species present by the Beer-Lambert law, which states that when a radiation of wavenumber passes through an absorbing medium, the intensity variation along the path of the beam is given by, [6]

where,

is the transmitted intensity of the radiation after it has traversed a distance through the medium,
is the initial intensity of the radiation,
is the absorbance of the medium,
is the absorption cross-section of the absorbing species,
is the number density of the absorbing species,
is the line strength (i.e. the total absorption per molecule) of the absorbing species at temperature ,
is the lineshape function for the particular absorption line. Sometimes also represented by ,
is the center frequency of the spectrum.

Temperature measurement

The above relation requires that the temperature of the absorbing species is known. However, it is possible to overcome this difficulty and measure the temperature simultaneously. There are number of ways to measure the temperature. A widely applied method, which can measure the temperature simultaneously, uses the fact that the line strength is a function of temperature alone. Here two different absorption lines for the same species are probed while sweeping the laser across the absorption spectrum, the ratio of the integrated absorbance, is then a function of temperature alone.

where,

is some reference temperature at which the line strengths are known,
is the difference in the lower energy levels involved in the transitions for the lines being probed.

Another way to measure the temperature is by relating the FWHM of the probed absorption line to the Doppler line width of the species at that temperature. This is given by,

where,

is the weight of one molecule of the species, and
is the molecular weight of the species.

Note: In the last expression, is in kelvins and is in g/mol. However, this method can be used, only when the gas pressure is low (of the order of few mbar). At higher pressures (tens of millibars or more), pressure or collisional broadening becomes important and the lineshape is no longer a function of temperature alone.

Velocity measurement

The effect of a mean flow of the gas in the path of the laser beam can be seen as a shift in the absorption spectrum, also known as Doppler shift. The shift in the frequency spectrum is related to the mean flow velocity by,

where,

is the angle between the flow direction and the laser beam direction.

Note : is not the same as the one mentioned before where it refers to the width of the spectrum. The shift is usually very small (3×10−5 cm−1 ms−1 for near-IR diode laser) and the shift-to-width ratio is of the order of 10−4.

Limitations and means of improvement

The main disadvantage of absorption spectrometry (AS) as well as laser absorption spectrometry (LAS) in general is that it relies on a measurement of a small change of a signal on top of a large background. Any noise introduced by the light source or the optical system will deteriorate the detectability of the technique. The sensitivity of direct absorption techniques is therefore often limited to an absorbance of ~10−3, far away from the shot noise level, which for single pass direct AS (DAS) is in the 10−7 – 10−8 range. Since this is insufficient for many types of applications, AS is seldom used in its simplest mode of operation.

There are basically two ways to improve on the situation; one is to reduce the noise in the signal, the other is to increase the absorption. The former can be achieved by the use of a modulation technique, whereas the latter can be obtained by placing the gas inside a cavity in which the light passes through the sample several times, thus increasing the interaction length. If the technique is applied to trace species detection, it is also possible to enhance the signal by performing detection at wavelengths where the transitions have larger line strengths, e.g. using fundamental vibrational bands or electronic transitions.

Modulation techniques

Modulation techniques make use of the fact that technical noise usually decreases with increasing frequency (which is why it is often referred to as 1/f noise) and improve the signal to noise ratio by encoding and detecting the absorption signal at a high frequency, where the noise level is low. The most common modulation techniques are wavelength modulation spectroscopy (WMS) and frequency modulation spectroscopy (FMS).

In WMS the wavelength of the light is continuously scanned across the absorption profile, and the signal is detected at a harmonic of the modulation frequency.

In FMS, the light is modulated at a much higher frequency but with a lower modulation index. As a result, a pair of sidebands separated from the carrier by the modulation frequency appears, giving rise to a so-called FM-triplet. The signal at the modulation frequency is a sum of the beat signals of the carrier with each of the two sidebands. Since these two sidebands are fully out of phase with each other, the two beat signals cancel in the absence of absorbers. However, an alteration of any of the sidebands, either by absorption or dispersion, or a phase shift of the carrier, will give rise to an unbalance between the two beat signals, and therefore a net-signal.

Although in theory baseline-free, both modulation techniques are usually limited by residual amplitude modulation (RAM), either from the laser or from multiple reflections in the optical system (etalon effects). If these noise contributions are held low, the sensitivity can be brought into the 10−5 – 10−6 range or even better.

In general the absorption imprints are generated by a straight line light propagation through a volume with the specific gas. To further enhance the signal, the pathway of the light travel can be increased with multi-pass cells. There is however a variety of the WMS-technique that utilizes the narrow line absorption from gases for sensing even when the gases are situated in closed compartments (e.g. pores) inside solid materia. The technique is referred to as gas in scattering media absorption spectroscopy (GASMAS).

Cavity-enhanced absorption spectrometry (CEAS)

The second way of improving the detectability of TDLAS technique is to extend the interaction length. This can be obtained by placing the species inside a cavity in which the light bounces back and forth many times, whereby the interaction length can be increased considerably. This has led to a group of techniques denoted as cavity enhanced AS (CEAS). The cavity can either be placed inside the laser, giving rise to intracavity AS, or outside, when it is referred to as an external cavity. Although the former technique can provide a high sensitivity, its practical applicability is limited because of all the non-linear processes involved.

External cavities can either be of multi-pass type, i.e. Herriott or White cells, of non- resonant type (off-axis alignment), or of resonant type, most often working as a Fabry–Pérot (FP) etalon. Multi-pass cells, which typically can provide an enhanced interaction length of up to ~2 orders of magnitude, are nowaday common together with TDLAS.

Resonant cavities can provide a much larger path length enhancement, in the order of the finesse of the cavity, F, which for a balanced cavity with high reflecting mirrors with reflectivities of ~99.99–99.999% can be ~ 104 to 105. It should be clear that if all this increase in interaction length can be utilized efficiently, this vouches for a significant increase in detectability. A problem with resonant cavities is that a high finesse cavity has very narrow cavity modes, often in the low kHz range (the width of the cavity modes is given by FSR/F, where FSR is the free-spectral range of the cavity, which is given by c/2L, where c is the speed of light and L is the cavity length). Since cw lasers often have free-running linewidths in the MHz range, and pulsed even larger, it is non-trivial to couple laser light effectively into a high finesse cavity.

The most important resonant CEAS techniques are cavity ring-down spectrometry (CRDS), integrated cavity output spectroscopy (ICOS) or cavity enhanced absorption spectroscopy (CEAS), phase-shift cavity ring-down spectroscopy (PS-CRDS) and Continuous wave Cavity Enhanced Absorption Spectrometry (cw-CEAS), either with optical locking, referred to as (OF-CEAS), [7] as has been demonstrated Romanini et al. [8] or by electronic locking., [8] as for example is done in the Noise-Immune Cavity-Enhanced Optical-Heterodyne Molecular Spectroscopy (NICE-OHMS) technique. [9] [10] [11] or combination of frequency modulation and optical feedback locking CEAS, referred to as (FM-OF-CEAS). [12]

The most important non-resonant CEAS techniques are off-axis ICOS (OA-ICOS) [13] or off-axis CEAS (OA-CEAS), wavelength modulation off-axis CEAS (WM-OA-CEAS), [14] off-axis phase-shift cavity enhanced absorption spectroscopy (off-axis PS-CEAS). [15]

These resonant and non-resonant cavity enhanced absorption techniques have so far not been used that frequently with TDLAS. However, since the field is developing fast, they will presumably be more used with TDLAS in the future.

Applications

Freeze-drying (lyophilization) cycle development and optimization for pharmaceuticals.

Flow diagnostics in hypersonic/re-entry speed research facilities and scramjet combustors.

Oxygen tunable diode laser spectrometers play an important role in safety applications in a wide range of industrial processes, for this reason, TDLS are often an integral part of modern chemical plants. The fast response time compared to other technologies for measuring gas composition, and the immunity to many background gasses and environmental conditions makes TDL technology a commonly selected technology for monitoring of combustible gasses in process environments. This technology is employed on flares, in vessel headspace and in other locations where explosive atmospheres must be prevented from forming. [16] According to a 2018 research study, TDL technology is the 4th most commonly selected technology for gas analysis in Chemical Processing. [17]

See also

Related Research Articles

<span class="mw-page-title-main">Nonlinear optics</span> Branch of physics

Nonlinear optics (NLO) is the branch of optics that describes the behaviour of light in nonlinear media, that is, media in which the polarization density P responds non-linearly to the electric field E of the light. The non-linearity is typically observed only at very high light intensities (when the electric field of the light is >108 V/m and thus comparable to the atomic electric field of ~1011 V/m) such as those provided by lasers. Above the Schwinger limit, the vacuum itself is expected to become nonlinear. In nonlinear optics, the superposition principle no longer holds.

Fourier-transform spectroscopy is a measurement technique whereby spectra are collected based on measurements of the coherence of a radiative source, using time-domain or space-domain measurements of the radiation, electromagnetic or not. It can be applied to a variety of types of spectroscopy including optical spectroscopy, infrared spectroscopy, nuclear magnetic resonance (NMR) and magnetic resonance spectroscopic imaging (MRSI), mass spectrometry and electron spin resonance spectroscopy.

<span class="mw-page-title-main">Fabry–Pérot interferometer</span> Optical device with parallel mirrors

In optics, a Fabry–Pérot interferometer (FPI) or etalon is an optical cavity made from two parallel reflecting surfaces. Optical waves can pass through the optical cavity only when they are in resonance with it. It is named after Charles Fabry and Alfred Perot, who developed the instrument in 1899. Etalon is from the French étalon, meaning "measuring gauge" or "standard".

Mode locking is a technique in optics by which a laser can be made to produce pulses of light of extremely short duration, on the order of picoseconds (10−12 s) or femtoseconds (10−15 s). A laser operated in this way is sometimes referred to as a femtosecond laser, for example, in modern refractive surgery. The basis of the technique is to induce a fixed phase relationship between the longitudinal modes of the laser's resonant cavity. Constructive interference between these modes can cause the laser light to be produced as a train of pulses. The laser is then said to be "phase-locked" or "mode-locked".

<span class="mw-page-title-main">Absorption spectroscopy</span> Spectroscopic techniques that measure the absorption of radiation

Absorption spectroscopy is spectroscopy that involves techniques that measure the absorption of electromagnetic radiation, as a function of frequency or wavelength, due to its interaction with a sample. The sample absorbs energy, i.e., photons, from the radiating field. The intensity of the absorption varies as a function of frequency, and this variation is the absorption spectrum. Absorption spectroscopy is performed across the electromagnetic spectrum.

<span class="mw-page-title-main">Raman scattering</span> Inelastic scattering of photons

Raman scattering or the Raman effect is the inelastic scattering of photons by matter, meaning that there is both an exchange of energy and a change in the light's direction. Typically this effect involves vibrational energy being gained by a molecule as incident photons from a visible laser are shifted to lower energy. This is called normal Stokes Raman scattering. The effect is exploited by chemists and physicists to gain information about materials for a variety of purposes by performing various forms of Raman spectroscopy. Many other variants of Raman spectroscopy allow rotational energy to be examined and electronic energy levels may be examined if an X-ray source is used in addition to other possibilities. More complex techniques involving pulsed lasers, multiple laser beams and so on are known.

Cavity ring-down spectroscopy (CRDS) is a highly sensitive optical spectroscopic technique that enables measurement of absolute optical extinction by samples that scatter and absorb light. It has been widely used to study gaseous samples which absorb light at specific wavelengths, and in turn to determine mole fractions down to the parts per trillion level. The technique is also known as cavity ring-down laser absorption spectroscopy (CRLAS).

<span class="mw-page-title-main">Optical ring resonators</span>

An optical ring resonator is a set of waveguides in which at least one is a closed loop coupled to some sort of light input and output. The concepts behind optical ring resonators are the same as those behind whispering galleries except that they use light and obey the properties behind constructive interference and total internal reflection. When light of the resonant wavelength is passed through the loop from the input waveguide, the light builds up in intensity over multiple round-trips owing to constructive interference and is output to the output bus waveguide which serves as a detector waveguide. Because only a select few wavelengths will be at resonance within the loop, the optical ring resonator functions as a filter. Additionally, as implied earlier, two or more ring waveguides can be coupled to each other to form an add/drop optical filter.

<span class="mw-page-title-main">Tunable laser</span>

A tunable laser is a laser whose wavelength of operation can be altered in a controlled manner. While all laser gain media allow small shifts in output wavelength, only a few types of lasers allow continuous tuning over a significant wavelength range.

<span class="mw-page-title-main">Electron paramagnetic resonance</span> Technique to study materials that have unpaired electrons

Electron paramagnetic resonance (EPR) or electron spin resonance (ESR) spectroscopy is a method for studying materials that have unpaired electrons. The basic concepts of EPR are analogous to those of nuclear magnetic resonance (NMR), but the spins excited are those of the electrons instead of the atomic nuclei. EPR spectroscopy is particularly useful for studying metal complexes and organic radicals. EPR was first observed in Kazan State University by Soviet physicist Yevgeny Zavoisky in 1944, and was developed independently at the same time by Brebis Bleaney at the University of Oxford.

<span class="mw-page-title-main">Frequency comb</span> Laser source with equal intervals of spectral energies

In optics, a frequency comb is a laser source whose spectrum consists of a series of discrete, equally spaced frequency lines. Frequency combs can be generated by a number of mechanisms, including periodic modulation of a continuous-wave laser, four-wave mixing in nonlinear media, or stabilization of the pulse train generated by a mode-locked laser. Much work has been devoted to this last mechanism, which was developed around the turn of the 21st century and ultimately led to one half of the Nobel Prize in Physics being shared by John L. Hall and Theodor W. Hänsch in 2005.

Laser absorption spectrometry (LAS) refers to techniques that use lasers to assess the concentration or amount of a species in gas phase by absorption spectrometry (AS).

Noise-immune cavity-enhanced optical-heterodyne molecular spectroscopy (NICE-OHMS) is an ultra-sensitive laser-based absorption technique that utilizes laser light to assess the concentration or the amount of a species in gas phase by absorption spectrometry (AS).

Gas in scattering media absorption spectroscopy (GASMAS) is an optical technique for sensing and analysis of gas located within porous and highly scattering solids, e.g. powders, ceramics, wood, fruit, translucent packages, pharmaceutical tablets, foams, human paranasal sinuses etc. It was introduced in 2001 by Prof. Sune Svanberg and co-workers at Lund University (Sweden). The technique is related to conventional high-resolution laser spectroscopy for sensing and spectroscopy of gas, but the fact that the gas here is "hidden" inside solid materials give rise to important differences.

Saturated absorption spectroscopy measures the transition frequency of an atom or molecule between its ground state and an excited state. In saturated absorption spectroscopy, two counter-propagating, overlapped laser beams are sent through a sample of atomic gas. One of the beams stimulates photon emission in excited atoms or molecules when the laser's frequency matches the transition frequency. By changing the laser frequency until these extra photons appear, one can find the exact transition frequency. This method enables precise measurements at room temperature because it is insensitive to doppler broadening. Absorption spectroscopy measures the doppler-broadened transition, so the atoms must be cooled to millikelvin temperatures to achieve the same sensitivity as saturated absorption spectroscopy.

Self-mixing or back-injection laser interferometry is an interferometric technique in which a part of the light reflected by a vibrating target is reflected into the laser cavity, causing a modulation both in amplitude and in frequency of the emitted optical beam. In this way, the laser becomes sensitive to the distance traveled by the reflected beam thus becoming a distance, speed or vibration sensor. The advantage compared to a traditional measurement system is a lower cost thanks to the absence of collimation optics and external photodiodes.

Incoherent broad band cavity enhanced absorption spectroscopy (IBBCEAS), sometimes called broadband cavity enhanced extinction spectroscopy (IBBCEES), measures the transmission of light intensity through a stable optical cavity consisting of high reflectance mirrors (typically R>99.9%). The technique is realized using incoherent sources of radiation e.g. Xenon arc lamps, LEDs or supercontinuum (SC) lasers, hence the name.

<span class="mw-page-title-main">Semiconductor laser theory</span> Theory of laser diodes

Semiconductor lasers or laser diodes play an important part in our everyday lives by providing cheap and compact-size lasers. They consist of complex multi-layer structures requiring nanometer scale accuracy and an elaborate design. Their theoretical description is important not only from a fundamental point of view, but also in order to generate new and improved designs. It is common to all systems that the laser is an inverted carrier density system. The carrier inversion results in an electromagnetic polarization which drives an electric field . In most cases, the electric field is confined in a resonator, the properties of which are also important factors for laser performance.

In quantum physics, light is in a squeezed state if its electric field strength Ԑ for some phases has a quantum uncertainty smaller than that of a coherent state. The term squeezing thus refers to a reduced quantum uncertainty. To obey Heisenberg's uncertainty relation, a squeezed state must also have phases at which the electric field uncertainty is anti-squeezed, i.e. larger than that of a coherent state. Since 2019, the gravitational-wave observatories LIGO and Virgo employ squeezed laser light, which has significantly increased the rate of observed gravitational-wave events.

Time-domain diffuse optics or time-resolved functional near-infrared spectroscopy is a branch of functional near-Infrared spectroscopy which deals with light propagation in diffusive media. There are three main approaches to diffuse optics namely continuous wave (CW), frequency domain (FD) and time-domain (TD). Biological tissue in the range of red to near-infrared wavelengths are transparent to light and can be used to probe deep layers of the tissue thus enabling various in vivo applications and clinical trials.

References

  1. "nanoplus| Tunable Diode Laser Absorption Spectroscopy (TDLAS)". nanoplus.com. Retrieved 2020-05-17.
  2. Cassidy, D. T.; Reid, J. (1982-04-01). "Atmospheric pressure monitoring of trace gases using tunable diode lasers". Applied Optics. The Optical Society. 21 (7): 1185–1190. Bibcode:1982ApOpt..21.1185C. doi:10.1364/ao.21.001185. ISSN   0003-6935. PMID   20389829.
  3. Werle, Peter; Slemr, Franz; Maurer, Karl; Kormann, Robert; Mücke, Robert; Jänker, Bernd (2002). "Near- and mid-infrared laser-optical sensors for gas analysis". Optics and Lasers in Engineering. Elsevier BV. 37 (2–3): 101–114. Bibcode:2002OptLE..37..101W. doi:10.1016/s0143-8166(01)00092-6. ISSN   0143-8166.
  4. Nadir, Zeeshan; Brown, Michael S.; Comer, Mary L.; Bouman, Charles A. (2017). "A Model-Based Iterative Reconstruction Approach to Tunable Diode Laser Absorption Tomography". IEEE Transactions on Computational Imaging. Institute of Electrical and Electronics Engineers (IEEE). 3 (4): 876–890. doi:10.1109/tci.2017.2690143. ISSN   2333-9403. S2CID   28611386.
  5. P. Zorabedian, Tunable external cavity semiconductor lasers, in Tunable Lasers Handbook, F. J. Duarte (Ed.) (Academic, New York, 1995) Chapter 8.
  6. See Bernath, Peter F. (2005), C7§6 p.272-4.
  7. D. Romanini, A. A. Kachanav, J. Morville, and M. Chenevier, Proc. SPIE EUROPTO (Ser. Environmental Sensing) 3821(8), 94 (1999)
  8. 1 2 Morville, J.; Kassi, S.; Chenevier, M.; Romanini, D. (2005-05-31). "Fast, low-noise, mode-by-mode, cavity-enhanced absorption spectroscopy by diode-laser self-locking" (PDF). Applied Physics B. Springer Science and Business Media LLC. 80 (8): 1027–1038. Bibcode:2005ApPhB..80.1027M. doi:10.1007/s00340-005-1828-z. ISSN   0946-2171. S2CID   120346016.
  9. Ma, Long-Sheng; Ye, Jun; Dubé, Pierre; Hall, John L. (1999-12-01). "Ultrasensitive frequency-modulation spectroscopy enhanced by a high-finesse optical cavity: theory and application to overtone transitions of C2H2 and C2HD". Journal of the Optical Society of America B. The Optical Society. 16 (12): 2255–2268. Bibcode:1999JOSAB..16.2255M. doi:10.1364/josab.16.002255. ISSN   0740-3224.
  10. Taubman, Matthew S.; Myers, Tanya L.; Cannon, Bret D.; Williams, Richard M. (2004). "Stabilization, injection and control of quantum cascade lasers, and their application to chemical sensing in the infrared". Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. Elsevier BV. 60 (14): 3457–3468. Bibcode:2004AcSpA..60.3457T. doi:10.1016/j.saa.2003.12.057. ISSN   1386-1425. PMID   15561632.
  11. Schmidt, Florian M.; Foltynowicz, Aleksandra; Ma, Weiguang; Lock, Tomas; Axner, Ove (2007). "Doppler-broadened fiber-laser-based NICE-OHMS – Improved detectability". Optics Express. The Optical Society. 15 (17): 10822–10831. Bibcode:2007OExpr..1510822S. doi: 10.1364/oe.15.010822 . ISSN   1094-4087. PMID   19547439.
  12. Kasyutich, Vasili L.; Sigrist, Markus W. (2013-02-02). "Characterisation of the potential of frequency modulation and optical feedback locking for cavity-enhanced absorption spectroscopy". Applied Physics B. Springer Science and Business Media LLC. 111 (3): 341–349. arXiv: 1212.3825 . Bibcode:2013ApPhB.111..341K. doi:10.1007/s00340-013-5338-0. ISSN   0946-2171. S2CID   253855037.
  13. Paul, Joshua B.; Lapson, Larry; Anderson, James G. (2001-09-20). "Ultrasensitive absorption spectroscopy with a high-finesse optical cavity and off-axis alignment". Applied Optics. The Optical Society. 40 (27): 4904–4910. Bibcode:2001ApOpt..40.4904P. doi:10.1364/ao.40.004904. ISSN   0003-6935. PMID   18360533.
  14. Kasyutich, V.L.; Canosa-Mas, C.E.; Pfrang, C.; Vaughan, S.; Wayne, R.P. (2002-11-01). "Off-axis continuous-wave cavity-enhanced absorption spectroscopy of narrow-band and broadband absorbers using red diode lasers". Applied Physics B: Lasers and Optics. Springer Science and Business Media LLC. 75 (6–7): 755–761. Bibcode:2002ApPhB..75..755K. doi:10.1007/s00340-002-1032-3. ISSN   0946-2171. S2CID   120045701.
  15. Kasyutich, Vasili L.; Martin, Philip A.; Holdsworth, Robert J. (2006). "Effect of broadband amplified spontaneous emission on absorption measurements in phase-shift off-axis cavity enhanced absorption spectroscopy". Chemical Physics Letters. Elsevier BV. 430 (4–6): 429–434. Bibcode:2006CPL...430..429K. doi:10.1016/j.cplett.2006.09.007. ISSN   0009-2614.
  16. "Tunable Diode Laser Spectroscopy: Theory & Background". Mettler-Toledo LLC. Retrieved 29 July 2021.
  17. Purdum, Traci. "Gas Analytics: Study find ROI, Accuracy, Proof Key Factors". Chemical Processing. Retrieved 29 July 2021.