This article possibly contains original research .(March 2017) |
Typing is the process of writing or inputting text by pressing keys on a typewriter, computer keyboard, mobile phone, or calculator. It can be distinguished from other means of text input, such as handwriting and speech recognition. Text can be in the form of letters, numbers and other symbols. The world's first typist was Lillian Sholes from Wisconsin in the United States, [1] [2] the daughter of Christopher Sholes, who invented the first practical typewriter. [1]
User interface features such as spell checker and autocomplete serve to facilitate and speed up typing and to prevent or correct errors the typist may make.
Hunt and peck (two-fingered typing) is a common form of typing in which the typist presses each key individually. Instead of relying on the memorized position of keys, the typist must find each key by sight. Although good accuracy may be achieved, the use of this method may also prevent the typist from being able to see what has been typed without glancing away from the keys, and any typing errors that are made may not be noticed immediately. Due to the fact that only a few fingers are used in this technique, this also means that the fingers are forced to move a much greater distance.
In this technique, the typist keeps their eyes on the source copy at all times. Touch typing also involves the use of the home row method, where typists rest their wrist down, rather than lifting up and typing (which can cause carpal tunnel syndrome [ citation needed ]). To avoid this, typists should sit up tall, leaning slightly forward from the waist, place their feet flat on the floor in front of them with one foot slightly in front of the other, and keep their elbows close to their sides with forearms slanted slightly upward to the keyboard; fingers should be curved slightly and rest on the home row.
Many touch typists also use keyboard shortcuts when typing on a computer. This allows them to edit their document without having to take their hands off the keyboard to use a mouse. An example of a keyboard shortcut is pressing the Ctrl key plus the S key to save a document as they type, or the Ctrl key plus the Z key to undo a mistake. Other shortcuts are the Ctrl key plus the C to copy and the Ctrl key and the V key to paste, and the Ctrl key and the X key to cut. Many experienced typists can feel or sense when they have made an error and can hit the ← Backspace key and make the correction with no increase in time between keystrokes.
There are many idiosyncratic typing styles in between novice-style "hunt and peck" and touch typing. For example, many "hunt and peck" typists have the keyboard layout memorized and are able to type while focusing their gaze on the screen. Some use just two fingers, while others use 3–6 fingers. Some use their fingers very consistently, with the same finger being used to type the same character every time, while others vary the way they use their fingers.
One study examining 30 subjects, of varying different styles and expertise, has found minimal difference in typing speed between touch typists and self-taught hybrid typists. [3] According to the study, "The number of fingers does not determine typing speed... People using self-taught typing strategies were found to be as fast as trained typists... instead of the number of fingers, there are other factors that predict typing speed... fast typists... keep their hands fixed on one position, instead of moving them over the keyboard, and more consistently use the same finger to type a certain letter." To quote Prof. Dr. Anna Feit: "We were surprised to observe that people who took a typing course, performed at similar average speed and accuracy, as those that taught typing to themselves and only used 6 fingers on average." [4]
A late 20th century trend in typing, primarily used with devices with small keyboards (such as PDAs and Smartphones), is thumbing or thumb typing. This can be accomplished using either only one thumb or both the thumbs, with more proficient typists reaching speeds of 100 words per minute. [5] Similar to desktop keyboards and input devices, if a user overuses keys which need hard presses and/or have small and unergonomic layouts, it could cause thumb tendonitis or other repetitive strain injury. [6]
Words per minute (WPM) is a measure of typing speed, commonly used in recruitment. For the purposes of WPM measurement a word is standardized to five characters or keystrokes. Therefore, "brown" counts as one word, but "mozzarella" counts as two.
The benefits of a standardized measurement of input speed are that it enables comparison across language and hardware boundaries. The speed of an Afrikaans-speaking operator in Cape Town can be compared with a French-speaking operator in Paris.
Today, even Written Chinese can be typed very quickly using the combination of a software prediction system and by typing their sounds in Pinyin. [7] Such prediction software even allows typing short-hand forms while producing complete characters. For example, the phrase "nǐ chī le ma" (你吃了吗) meaning "Have you eaten yet?" can be typed with just 4 strokes: "nclm".
In one study of average computer users, the average rate for transcription was 33 words per minute, and 19 words per minute for composition. [8] In the same study, when the group was divided into "fast", "moderate" and "slow" groups, the average speeds were 40 wpm, 35 wpm, and 23 wpm respectively. An average professional typist reaches 50 to 80 wpm, while some positions can require 80 to 95 wpm (usually the minimum required for dispatch positions and other typing jobs), and some advanced typists work at speeds above 120 wpm. [9] [10] Two-finger typists, sometimes also referred to as "hunt and peck" typists, commonly reach sustained speeds of about 37 wpm for memorized text and 27 wpm when copying text, but in bursts may be able to reach speeds of 60 to 70 wpm. [11] From the 1920s through the 1970s, typing speed (along with shorthand speed) was an important secretarial qualification and typing contests were popular and often publicized by typewriter companies as promotional tools.
A less common measure of the speed of a typist, CPM is used to identify the number of characters typed per minute. This is a common measurement for typing programs, or typing tutors, as it can give a more accurate measure of a person's typing speed without having to type for a prolonged period of time. The common conversion factor between WPM and CPM is 5. It is also used occasionally for associating the speed of a reader with the amount they have read. CPM has also been applied to 20th century printers, but modern faster printers more commonly use PPM (pages per minute).
The fastest typing speed ever, 216 words per minute, was achieved by Stella Pajunas-Garnand from Chicago in 1946 in one minute on an IBM electric [12] [13] [14] [15] using the QWERTY keyboard layout. [16] [17] As of 2005 [update] , writer Barbara Blackburn was the fastest English language typist in the world, according to The Guinness Book of World Records . Using the Dvorak keyboard layout, she had maintained 150 wpm for 50 minutes, and 170 wpm for shorter periods, with a peak speed of 212 wpm. Barbara Blackburn, who failed her QWERTY typing class in high school, first encountered the Dvorak layout in 1938 and then she quickly learned to achieve very high speeds of typing, also she occasionally toured giving speed-typing demonstrations during her secretarial career. She appeared on Late Night with David Letterman on January 24, 1985, but felt that Letterman made a spectacle of her. [18]
The recent emergence of several competitive typing websites has allowed fast typists on computer keyboards to emerge along with new records, though many of these are unverifiable. Some notable, verified records include 255 wpm on a one-minute, random-word test by a user under the username slekap and occasionally bailey, [19] 213 wpm on a 1-hour, random-word test by Joshua Hu, [20] 221 wpm average on 10 random quotes by Joshua Hu, [21] and first place in the 2020 Ultimate Typing Championship by Anthony Ermollin based on an average of 180.88 wpm on texts of various lengths. [22] [23] These three people are the most commonly cited fastest typists in online typing communities.[ citation needed ] All of their records were set on the QWERTY keyboard layout.
Using a personalized interface, physicist Stephen Hawking, who suffered from amyotrophic lateral sclerosis, managed to type 15 wpm with a switch and adapted software created by Walt Woltosz. Due to a slowdown of his motor skills, his interface was upgraded with an infrared camera that detected "twitches in the cheek muscle under the eye." [24] His typing speed decreased to approximately one word per minute in the later part of his life. [25]
The numeric entry, or 10-key, speed is a measure of one's ability to manipulate a numeric keypad. Generally, it is measured in keystrokes per hour (KPH).
This section needs additional citations for verification .(June 2024) |
With the introduction of computers and word-processors, there has been a change in how text-entry is performed. In the past, using a typewriter, speed was measured with a stopwatch and errors were tallied by hand. With the current technology, document preparation is more about using word-processors as a composition aid, changing the meaning of error rate and how it is measured. Research performed by R. William Soukoreff and I. Scott MacKenzie, has led to a discovery of the application of a well-known algorithm. Through the use of this algorithm and accompanying analysis technique, two statistics were used, minimum string distance error rate (MSD error rate) and keystrokes per character (KSPC). The two advantages of this technique include:
Through analysis of keystrokes, the keystrokes of the input stream were divided into four classes: Correct (C), Incorrect Fixed (IF), Fixes (F), and Incorrect Not Fixed (INF). These key stroke classification are broken down into the following
Using these classes, the Minimum String Distance Error Rate and the Key Strokes per Character statistics can both be calculated.
The minimum string distance (MSD) is the number of "primitives" which is the number of insertions, deletions, or substitutions to transform one string into another. The following equation was found for the MSD Error Rate.
MSD Error Rate =
With the minimum string distance error, errors that are corrected do not appear in the transcribed text. The following example shows why this can be an important class of errors to consider:
Presented Text: the quick brown
Input Stream: the quix<-ck brown
Transcribed Text: the quick brown
In the above example, the incorrect character ('x') was deleted with a backspace ('<-'). Since these errors do not appear in the transcribed text, the MSD error rate is 0%. That is the purpose of the key strokes per character (KSPC) statistic.
KSPC =
There are some shortcomings of the KSPC statistic, such as:
Using the classes described above, further metrics were defined by R. William Soukoreff and I.Scott MacKenzie:
Error correction efficiency refers to the ease with which the participant performed error correction.
Participant conscientiousness is the ratio of corrected errors to the total number of error, which helps distinguish perfectionists from apathetic participants.
If C represents the amount of useful information transferred, INF, IF, and F represent the proportion of bandwidth wasted.
The classes described also provide an intuitive definition of total error rate:
Since these three error rates are ratios, they are comparable between different devices, something that cannot be done with the KSPC statistic, which is device dependent. [26]
Currently, two tools are publicly available for text entry researchers to record text entry performance metrics. The first is TEMA [27] that runs only on the Android (operating system). The second is WebTEM that runs on any device with a modern Web browser, and works with almost all text entry technique. [28]
Keystroke dynamics, or typing dynamics, is the obtaining of detailed timing information that describes exactly when each key was pressed and when it was released as a person is typing at a computer keyboard for biometric identification, [29] similar to speaker recognition. [30] Data needed to analyze keystroke dynamics is obtained by keystroke logging.
The behavioral biometric of Keystroke Dynamics uses the manner and rhythm in which an individual types characters on a keyboard or keypad. [31]
A keyset or chorded keyboard is a computer input device that allows the user to enter characters or commands formed by pressing several keys together, like playing a "chord" on a piano. The large number of combinations available from a small number of keys allows text or commands to be entered with one hand, leaving the other hand free. A secondary advantage is that it can be built into a device that is too small to contain a normal-sized keyboard.
QWERTY is a keyboard layout for Latin-script alphabets. The name comes from the order of the first six keys on the top letter row of the keyboard: QWERTY. The QWERTY design is based on a layout included in the Sholes and Glidden typewriter sold via E. Remington and Sons from 1874. QWERTY became popular with the success of the Remington No. 2 of 1878 and remains in ubiquitous use.
In computing, a keyboard shortcut also known as hotkey is a series of one or several keys to quickly invoke a software program or perform a preprogrammed action. This action may be part of the standard functionality of the operating system or application program, or it may have been written by the user in a scripting language. Some integrated keyboards also include pointing devices; the definition of exactly what counts as a "key" sometimes differs.
Touch typing is a style of typing. Although the phrase refers to typing without using the sense of sight to find the keys—specifically, a touch typist will know their location on the keyboard through muscle memory—the term is often used to refer to a specific form of touch typing that involves placing the eight fingers in a horizontal row along the middle of the keyboard and having them reach for specific other keys. Both two-handed touch typing and one-handed touch typing are possible.
A typographical error, also called a misprint, is a mistake made in the typing of printed or electronic material. Historically, this referred to mistakes in manual typesetting. Technically, the term includes errors due to mechanical failure or slips of the hand or finger, but excludes errors of ignorance, such as spelling errors, or changing and misuse of words such as "than" and "then". Before the arrival of printing, the copyist's mistake or scribal error was the equivalent for manuscripts. Most typos involve simple duplication, omission, transposition, or substitution of a small number of characters.
Words per minute, commonly abbreviated as WPM, is a measure of words processed in a minute, often used as a measurement of the speed of typing, reading or Morse code sending and receiving.
Arrow keys or cursor movement keys are keys on a computer keyboard that are either programmed or designated to move the cursor in a specified direction.
Predictive text is an input technology used where one key or button represents many letters, such as on the physical numeric keypads of mobile phones and in accessibility technologies. Each key press results in a prediction rather than repeatedly sequencing through the same group of "letters" it represents, in the same, invariable order. Predictive text could allow for an entire word to be input by single keypress. Predictive text makes efficient use of fewer device keys to input writing into a text message, an e-mail, an address book, a calendar, and the like.
The PLUM keyboard is a keyboard layout which differs from the traditional QWERTY keyboard in both physical key layout and letter arrangement. Unlike most keyboards, the PLUM keyboard organizes keys in a square grid, as opposed to the staggered rows of a typewriter. Though the Plum Keyboard is currently off-line, it is still being promoted.
Japanese input methods are used to input Japanese characters on a computer.
Keystroke dynamics, keystroke biometrics, typing dynamics, ortyping biometrics refer to the collection of biometric information generated by key-press-related events that occur when a user types on a keyboard. Use of patterns in key operation to identify operators predates modern computing, and has been proposed as an authentication alternative to passwords and PIN numbers.
A projection keyboard is a form of computer input device whereby the image of a virtual keyboard is projected onto a surface: when a user touches the surface covered by an image of a key, the device records the corresponding keystroke. Some connect to Bluetooth devices, including many of the latest smartphone, tablet, and mini-PC devices with Android, iOS or Windows operating system.
LetterWise and WordWise were predictive text entry systems developed by Eatoni Ergonomics (Eatoni) for handheld devices with ambiguous keyboards / keypads, typically non-smart traditional cellphones and portable devices with keypads. All patents covering those systems have expired. LetterWise used a prefix based predictive disambiguation method and can be demonstrated to have some advantages over the non-predictive Multi-tap technique that was in widespread use at the time that system was developed. WordWise was not a dictionary-based predictive system, but rather an extension of the LetterWise system to predict whole words from their linguistic components. It was designed to compete with dictionary-based predictive systems such as T9 and iTap which were commonly used with mobile phones with 12-key telephone keypads.
FITALY is a keyboard layout specifically optimized for stylus or touch-based input. The design places the most common letters closest to the centre to minimize distance travelled while entering a word. The name, FITALY, is derived from the letters occupying the second row in the layout.
The Ultimate Typing Championship (UTC) is a typing competition designed to identify and award the fastest typists in the US.
Dvorak is a keyboard layout for English patented in 1936 by August Dvorak and his brother-in-law, William Dealey, as a faster and more ergonomic alternative to the QWERTY layout. Dvorak proponents claim that it requires less finger motion and as a result reduces errors, increases typing speed, reduces repetitive strain injuries, or is simply more comfortable than QWERTY.
A keyboard layout is any specific physical, visual, or functional arrangement of the keys, legends, or key-meaning associations (respectively) of a computer keyboard, mobile phone, or other computer-controlled typographic keyboard.
The thumb-shift keyboard is a keyboard design for inputting Japanese sentences on word processors and computers. It was invented by Fujitsu in the late 1970s and released in 1980 as a feature of the line of Japanese word processors the company sold, named OASYS, to make Japanese input easier, faster and more natural. It is popular among people who input large quantities of Japanese sentences, such as writers, playwrights, lawyers and so on, because of its ease of use and speed. The rights regarding the use of this design were transferred to Nihongo Nyuuryoku Consortium, a technology sharing cooperative of interested companies, in 1989. It is referred to as an example of keyboard layout in Japanese Industrial Standards.
MessagEase is an input method and virtual keyboard for touchscreen devices. It relies on a new entry system designed by Saied B. Nesbat, formatted as a 3x3 matrix keypad where users may press or swipe up, down, left, right, or diagonally to access all keys and symbols. It is a keyboard that was designed for devices like cell phones, mimicking the early cell phones' limited number of 12 keys.
Barbara Clay Henley Blackburn was an American clerical worker recognized for her claimed fast typing speed using the Dvorak keyboard layout.
{{cite conference}}
: CS1 maint: multiple names: authors list (link){{cite journal}}
: Cite journal requires |journal=
(help)