UDP-4-amino-4-deoxy-L-arabinose aminotransferase

Last updated
UDP-4-amino-4-deoxy-L-arabinose aminotransferase
Identifiers
EC no. 2.6.1.87
Databases
IntEnz IntEnz view
BRENDA BRENDA entry
ExPASy NiceZyme view
KEGG KEGG entry
MetaCyc metabolic pathway
PRIAM profile
PDB structures RCSB PDB PDBe PDBsum
Search
PMC articles
PubMed articles
NCBI proteins

UDP-4-amino-4-deoxy-L-arabinose aminotransferase (EC 2.6.1.87, UDP-(beta-L-threo-pentapyranosyl-4-ulose diphosphate) aminotransferase, UDP-4-amino-4-deoxy-L-arabinose---oxoglutarate aminotransferase, UDP-Ara4O aminotransferase, UDP-L-Ara4N transaminase) is an enzyme with systematic name UDP-4-amino-4-deoxy-beta-L-arabinose:2-oxoglutarate aminotransferase. [1] [2] This enzyme catalyses the following chemical reaction

UDP-4-amino-4-deoxy-beta-L-arabinopyranose + 2-oxoglutarate UDP-beta-L-threo-pentapyranos-4-ulose + L-glutamate

This protein is a pyridoxal 5'-phosphate enzyme.

Related Research Articles

<span class="mw-page-title-main">Glutamate dehydrogenase</span> Hexameric enzyme

Glutamate dehydrogenase is an enzyme observed in both prokaryotes and eukaryotic mitochondria. The aforementioned reaction also yields ammonia, which in eukaryotes is canonically processed as a substrate in the urea cycle. Typically, the α-ketoglutarate to glutamate reaction does not occur in mammals, as glutamate dehydrogenase equilibrium favours the production of ammonia and α-ketoglutarate. Glutamate dehydrogenase also has a very low affinity for ammonia, and therefore toxic levels of ammonia would have to be present in the body for the reverse reaction to proceed. However, in brain, the NAD+/NADH ratio in brain mitochondria encourages oxidative deamination. In bacteria, the ammonia is assimilated to amino acids via glutamate and aminotransferases. In plants, the enzyme can work in either direction depending on environment and stress. Transgenic plants expressing microbial GLDHs are improved in tolerance to herbicide, water deficit, and pathogen infections. They are more nutritionally valuable.

<span class="mw-page-title-main">Galactosyltransferase</span> Class of enzymes

Galactosyltransferase is a type of glycosyltransferase which catalyzes the transfer of galactose. An example is B-N-acetylglucosaminyl-glycopeptide b-1,4-galactosyltransferase.

<span class="mw-page-title-main">4-aminobutyrate transaminase</span> Class of enzymes

In enzymology, 4-aminobutyrate transaminase, also called GABA transaminase or 4-aminobutyrate aminotransferase, or GABA-T, is an enzyme that catalyzes the chemical reaction:

In enzymology, a dTDP-4-amino-4,6-dideoxy-D-glucose transaminase is an enzyme that catalyzes the chemical reaction

In enzymology, a dTDP-4-amino-4,6-dideoxygalactose transaminase is an enzyme that catalyzes the chemical reaction

In enzymology, glutamate-prephenate aminotransferase is an enzyme that catalyzes the chemical reaction

In enzymology, a (S)-3-amino-2-methylpropionate transaminase is an enzyme that catalyzes the chemical reaction

In enzymology, an UDP-2-acetamido-4-amino-2,4,6-trideoxyglucose transaminase is an enzyme that catalyzes the chemical reaction

UDP-glucuronic acid dehydrogenase (UDP-4-keto-hexauronic acid decarboxylating) (EC 1.1.1.305, UDP-GlcUA decarboxylase, ArnADH) is an enzyme with systematic name UDP-glucuronate:NAD+ oxidoreductase (decarboxylating). This enzyme catalyses the following chemical reaction

UDP-4-amino-4-deoxy-L-arabinose formyltransferase is an enzyme with systematic name 10-formyltetrahydrofolate:UDP-4-amino-4-deoxy-beta-L-arabinose N-formyltransferase. This enzyme catalyses the following chemical reaction

2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate synthase is an enzyme with systematic name L-aspartate 4-semialdehyde:1-deoxy-D-threo-hexo-2,5-diulose 6-phosphate methylglyoxaltransferase. This enzyme catalyses the following chemical reaction

Lipid IVA 4-amino-4-deoxy-L-arabinosyltransferase is an enzyme with systematic name 4-amino-4-deoxy-alpha-L-arabinopyranosyl ditrans, octacis-undecaprenyl phosphate:lipid IVA 4-amino-4-deoxy-L-arabinopyranosyltransferase. This enzyme catalyses the following chemical reaction

DTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose transaminase is an enzyme with systematic name dTDP-3-amino-3,6-dideoxy-alpha-D-glucopyranose:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

DTDP-3-amino-3,6-dideoxy-alpha-D-galactopyranose transaminase is an enzyme with systematic name dTDP-3-amino-3,6-dideoxy-alpha-D-galactopyranose:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

UDP-4-amino-4,6-dideoxy-N-acetyl-alpha-D-glucosamine transaminase is an enzyme with systematic name UDP-4-amino-4,6-dideoxy-N-acetyl-alpha-D-glucosamine:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

UDP-4-amino-4,6-dideoxy-N-acetyl-beta-L-altrosamine transaminase is an enzyme with systematic name UDP-4-amino-4,6-dideoxy-N-acetyl-beta-L-altrosamine:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

UDP-2-acetamido-2-deoxy-ribo-hexuluronate aminotransferase is an enzyme with systematic name UDP-2-acetamido-3-amino-2,3-dideoxy-alpha-D-glucuronate:2-oxoglutarate aminotransferase. This enzyme catalyses the following chemical reaction

Undecaprenyl-phosphate 4-deoxy-4-formamido-L-arabinose transferase is an enzyme with systematic name UDP-4-amino-4-deoxy-alpha-L-arabinose:ditrans,octacis-undecaprenyl phosphate 4-amino-4-deoxy-alpha-L-arabinosyltransferase. This enzyme catalyses the following chemical reaction

Unsaturated rhamnogalacturonyl hydrolase (EC 3.2.1.172, YteR, YesR) is an enzyme with systematic name 2-O-(4-deoxy-beta-L-threo-hex-4-enopyranuronosyl)-alpha-L-rhamnopyranose hydrolase. This enzyme catalyses the following chemical reaction

UDP-N-acetylglucosamine 4,6-dehydratase (configuration-retaining) (EC 4.2.1.135, PglF) is an enzyme with systematic name UDP-N-acetyl-α-Dglucosamine hydro-lyase (configuration-retaining; UDP-2-acetamido-2,6-dideoxy-α-Dxylo-hex-4-ulose-forming). This enzyme catalyses the following chemical reaction

References

  1. Breazeale SD, Ribeiro AA, Raetz CR (July 2003). "Origin of lipid A species modified with 4-amino-4-deoxy-L-arabinose in polymyxin-resistant mutants of Escherichia coli. An aminotransferase (ArnB) that generates UDP-4-deoxyl-L-arabinose". The Journal of Biological Chemistry. 278 (27): 24731–9. doi: 10.1074/jbc.m304043200 . PMID   12704196.
  2. Noland BW, Newman JM, Hendle J, Badger J, Christopher JA, Tresser J, Buchanan MD, Wright TA, Rutter ME, Sanderson WE, Müller-Dieckmann HJ, Gajiwala KS, Buchanan SG (November 2002). "Structural studies of Salmonella typhimurium ArnB (PmrH) aminotransferase: a 4-amino-4-deoxy-L-arabinose lipopolysaccharide-modifying enzyme". Structure. 10 (11): 1569–80. doi: 10.1016/s0969-2126(02)00879-1 . PMID   12429098.