Undular bore

Last updated
Image of a likely undular bore wave Ondes de pression au-dessus de la Mer d'Arabie.jpg
Image of a likely undular bore wave

In meteorology, an undular bore is a wave disturbance in the Earth's atmosphere and can be seen through unique cloud formations. They normally occur within an area of the atmosphere which is stable in the low levels after an outflow boundary or a cold front moves through.

Contents

In hydraulics, an undular bore is a gentle bore with an undular hydraulic jump pattern at the downstream (subcritical) side.

In meteorology

NEXRAD radar image of undular bore wave Undular bore wave two.gif
NEXRAD radar image of undular bore wave

Overview

View of a small undular bore from Earth. Small patch of altocumulus undulatus 2.jpg
View of a small undular bore from Earth.

Undular bores are usually formed when two air masses of different temperatures collide. When a low level boundary such as a cold front or outflow boundary approaches a layer of cold, stable air, it creates a disturbance in the atmosphere producing a wave-like motion, known as a gravity wave. Although the undular bore waves appear as bands of clouds across the sky, they are transverse waves, and are propelled by the transfer of energy from an oncoming storm and are shaped by gravity. The ripple-like appearance of this wave is described as the disturbance in the water when a pebble is dropped into a pond or when a moving boat creates waves in the surrounding water. The object displaces the water or medium the wave is travelling through and the medium moves in an upward motion. However, because of gravity, the water or medium is pulled back down and the repetition of this cycle creates the transverse wave motion. [1]

The undular bore's wavelength can measure 5 miles (8.0 km) peak to peak and can travel 16 kilometres per hour (9.9 mph) to 95 kilometres per hour (59 mph). [1] The medium it travels through is the atmosphere. There are several varying types of ‘‘bores’’ in different layers of the atmosphere, such as the mesospheric bore which occurs in the mesosphere.

Occurrences

Rare but not unknown in a great many locations, the waves appear with some predictability and regularity in the Gulf of Carpentaria during spring. They have been seen as frequently as six days in a row according to reports by the two pilots who have most experience with soaring these sometimes enormous examples of the undular bore, known in Australia as the Morning Glory cloud.

In hydraulics

Undular bore and whelps near the mouth of Araguari River in north-eastern Brazil. View is oblique toward mouth from airplane at approximately 30 m (100 ft) altitude. Undular bore Araguari River-Brazil-USGS-bws00026.jpg
Undular bore and whelps near the mouth of Araguari River in north-eastern Brazil. View is oblique toward mouth from airplane at approximately 30 m (100 ft) altitude.
Undular character of the Severn bore near Over Bridge on 9 March 2005. Severn Bore near Over Bridge, Gloucester - geograph.org.uk - 346180.jpg
Undular character of the Severn bore near Over Bridge on 9 March 2005.

The term "bore" is also used to describe positive surges advancing in shallow waters. When the surge's Froude number is less than 1.4 to 1.7 (i.e. above unity and below a number somewhere in the range 1.4 to 1.7), the advancing front is followed by a train of well-defined free-surface undulations (called "whelps"). [3] The surge is then called an undular surge or undular bore.

The undulations form a standing wave pattern, relative to the undular bore front. So, the phase velocity (propagation velocity relative to still water) of the undulations is just high enough to keep the undulations stationary relative to the bore front. Now, in water waves, the group velocity (which is also the energy-transport velocity) is less than the phase velocity. Therefore, on average, wave energy of the undulations is transported away from the front, and contributing to the energy loss in the region of the front. [4]

A related occurrence of positive surges is the tidal bore in estuaries.

See also

Related Research Articles

<span class="mw-page-title-main">Wave</span> Repeated oscillation around equilibrium

In physics, mathematics, engineering, and related fields, a wave is a propagating dynamic disturbance of one or more quantities. Periodic waves oscillate repeatedly about an equilibrium (resting) value at some frequency. When the entire waveform moves in one direction, it is said to be a travelling wave; by contrast, a pair of superimposed periodic waves traveling in opposite directions makes a standing wave. In a standing wave, the amplitude of vibration has nulls at some positions where the wave amplitude appears smaller or even zero.

<span class="mw-page-title-main">Shock wave</span> Propagating disturbance

In physics, a shock wave, or shock, is a type of propagating disturbance that moves faster than the local speed of sound in the medium. Like an ordinary wave, a shock wave carries energy and can propagate through a medium but is characterized by an abrupt, nearly discontinuous, change in pressure, temperature, and density of the medium.

<span class="mw-page-title-main">Hydraulic jump</span> Discharge of high velocity liquid into lower velocity area

A hydraulic jump is a phenomenon in the science of hydraulics which is frequently observed in open channel flow such as rivers and spillways. When liquid at high velocity discharges into a zone of lower velocity, a rather abrupt rise occurs in the liquid surface. The rapidly flowing liquid is abruptly slowed and increases in height, converting some of the flow's initial kinetic energy into an increase in potential energy, with some energy irreversibly lost through turbulence to heat. In an open channel flow, this manifests as the fast flow rapidly slowing and piling up on top of itself similar to how a shockwave forms.

<span class="mw-page-title-main">Physical oceanography</span> Study of physical conditions and processes within the ocean

Physical oceanography is the study of physical conditions and physical processes within the ocean, especially the motions and physical properties of ocean waters.

<span class="mw-page-title-main">Lee wave</span> Atmospheric stationary oscillations

In meteorology, lee waves are atmospheric stationary waves. The most common form is mountain waves, which are atmospheric internal gravity waves. These were discovered in 1933 by two German glider pilots, Hans Deutschmann and Wolf Hirth, above the Giant Mountains. They are periodic changes of atmospheric pressure, temperature and orthometric height in a current of air caused by vertical displacement, for example orographic lift when the wind blows over a mountain or mountain range. They can also be caused by the surface wind blowing over an escarpment or plateau, or even by upper winds deflected over a thermal updraft or cloud street.

<span class="mw-page-title-main">Tidal bore</span> A water wave traveling upstream a river or narrow bay because of an incoming tide

A tidal bore, often simply given as bore in context, is a tidal phenomenon in which the leading edge of the incoming tide forms a wave of water that travels up a river or narrow bay, reversing the direction of the river or bay's current. It is a strong tide that pushes up the river, against the current.

<span class="mw-page-title-main">Internal wave</span> Type of gravity waves that oscillate within a fluid medium

Internal waves are gravity waves that oscillate within a fluid medium, rather than on its surface. To exist, the fluid must be stratified: the density must change with depth/height due to changes, for example, in temperature and/or salinity. If the density changes over a small vertical distance, the waves propagate horizontally like surface waves, but do so at slower speeds as determined by the density difference of the fluid below and above the interface. If the density changes continuously, the waves can propagate vertically as well as horizontally through the fluid.

<span class="mw-page-title-main">Morning Glory cloud</span> Meteorological phenomenon

The Morning Glory cloud is a rare meteorological phenomenon consisting of a low-level atmospheric solitary wave and associated cloud, occasionally observed in different locations around the world. The wave often occurs as an amplitude-ordered series of waves forming bands of roll clouds.

<span class="mw-page-title-main">Outflow boundary</span> Mesoscale boundary separating outflow from the surrounding air

An outflow boundary, also known as a gust front, is a storm-scale or mesoscale boundary separating thunderstorm-cooled air (outflow) from the surrounding air; similar in effect to a cold front, with passage marked by a wind shift and usually a drop in temperature and a related pressure jump. Outflow boundaries can persist for 24 hours or more after the thunderstorms that generated them dissipate, and can travel hundreds of kilometers from their area of origin. New thunderstorms often develop along outflow boundaries, especially near the point of intersection with another boundary. Outflow boundaries can be seen either as fine lines on weather radar imagery or else as arcs of low clouds on weather satellite imagery. From the ground, outflow boundaries can be co-located with the appearance of roll clouds and shelf clouds.

This is a list of meteorology topics. The terms relate to meteorology, the interdisciplinary scientific study of the atmosphere that focuses on weather processes and forecasting.

<span class="mw-page-title-main">Altostratus undulatus cloud</span> Variety of cloud

The altostratus undulatus is a type of altostratus cloud with signature undulations within it. These undulations may be visible, but frequently they are indiscernible to the naked eye. These formations will generally appear in the early stages of destabilizing return flows, especially over the southern plains of the United States, when the surface temperature is still relatively cool. The wavy strips of clouds are generally near an inversion surface.

<span class="mw-page-title-main">Arcus cloud</span> Low-altitude horizontal cloud formation

An arcus cloud is a low, horizontal cloud formation, usually appearing as an accessory cloud to a cumulonimbus. Roll clouds and shelf clouds are the two main types of arcus clouds. They most frequently form along the leading edge or gust fronts of thunderstorms; some of the most dramatic arcus formations mark the gust fronts of derecho-producing convective systems. Roll clouds may also arise in the absence of thunderstorms, forming along the shallow cold air currents of some sea breeze boundaries and cold fronts.

<span class="mw-page-title-main">River surfing</span> Surface water sport

River surfing is the sport of surfing either standing waves, tidal bores or upstream waves in rivers. Claims for its origins include a 1955 ride of 2.4 km (1.5 mi) along the tidal bore of the River Severn.

<span class="mw-page-title-main">Air-mass thunderstorm</span> Thunderstorm that is generally weak and usually not severe

An air-mass thunderstorm, also called an "ordinary", "single cell", "isolated" or "garden variety" thunderstorm, is a thunderstorm that is generally weak and usually not severe. These storms form in environments where at least some amount of Convective Available Potential Energy (CAPE) is present, but with very low levels of wind shear and helicity. The lifting source, which is a crucial factor in thunderstorm development, is usually the result of uneven heating of the surface, though they can be induced by weather fronts and other low-level boundaries associated with wind convergence. The energy needed for these storms to form comes in the form of insolation, or solar radiation. Air-mass thunderstorms do not move quickly, last no longer than an hour, and have the threats of lightning, as well as showery light, moderate, or heavy rainfall. Heavy rainfall can interfere with microwave transmissions within the atmosphere.

<span class="mw-page-title-main">Atmospheric instability</span> Condition where the Earths atmosphere is generally considered to be unstable

Atmospheric instability is a condition where the Earth's atmosphere is considered to be unstable and as a result local weather is highly variable through distance and time. Atmospheric instability encourages vertical motion, which is directly correlated to different types of weather systems and their severity. For example, under unstable conditions, a lifted parcel of air will find cooler and denser surrounding air, making the parcel prone to further ascent, in a positive feedback loop.

<span class="mw-page-title-main">Outline of oceanography</span> Hierarchical outline list of articles related to oceanography

The following outline is provided as an overview of and introduction to Oceanography.

<span class="mw-page-title-main">Gulf of California moisture surge</span> Meteorological event

A Gulf of California moisture surge, or simply gulf surge, is a meteorological event where a pulse of high humidity air is pushed up the Gulf of California. Gulf surges bring moisture to southern Arizona during the North American Monsoon. Prior to the 1970s, the consensus of meteorologists was the moisture that fueled the central and southern Arizona monsoon resulted from the movement of the Bermuda High to a more south and west position, which in turn transported water vapor to the region from the Gulf of Mexico. However, operational meteorologists in the 1970s described episodic surges of moisture that infiltrated the area that was thought to originate in the Gulf of California. It was noted that these episodes were likely to be associated with a convective system near the tip of the Baja peninsula such as a tropical cyclone or an easterly wave.

<span class="mw-page-title-main">Glossary of tropical cyclone terms</span>

The following is a glossary of tropical cyclone terms.

<span class="mw-page-title-main">Glossary of meteorology</span> List of definitions of terms and concepts commonly used in meteorology

This glossary of meteorology is a list of terms and concepts relevant to meteorology and atmospheric science, their sub-disciplines, and related fields.

Tides in marginal seas are tides affected by their location in semi-enclosed areas along the margins of continents and differ from tides in the open oceans. Tides are water level variations caused by the gravitational interaction between the Moon, the Sun and the Earth. The resulting tidal force is a secondary effect of gravity: it is the difference between the actual gravitational force and the centrifugal force. While the centrifugal force is constant across the Earth, the gravitational force is dependent on the distance between the two bodies and is therefore not constant across the Earth. The tidal force is thus the difference between these two forces on each location on the Earth.

References

  1. 1 2 Martin Setvak; Jochen Kerkmann; Alexander Jacob; HansPeter Roesli; Stefano Gallino & Daniel Lindsey (2007-03-19). "Outflow from convective storm, Mauritania and adjacent Atlantic Ocean (13 August 2006)" (PDF). Agenzia Regionale per la Protezione dell'Ambiente Ligure. Archived from the original (PDF) on 25 July 2011. Retrieved 2009-07-03.
  2. Figure 5 in: Susan Bartsch-Winkler; David K. Lynch (1988), Catalog of worldwide tidal bore occurrences and characteristics (Circular 1022), U. S. Geological Survey
  3. Chanson, Hubert (2009). "Current Knowledge In Hydraulic Jumps And Related Phenomena. A Survey of Experimental Results" . European Journal of Mechanics B/Fluids. 28 (2): 191–210. Bibcode:2009EuJMB..28..191C. doi:10.1016/j.euromechflu.2008.06.004. ISSN   0997-7546.
  4. Benjamin, T.B.; Lighthill, M.J. (1954), "On cnoidal waves and bores", Proceedings of the Royal Society of London. Series A, Mathematical and Physical Sciences, 224 (1159): 448–460, Bibcode:1954RSPSA.224..448B, doi:10.1098/rspa.1954.0172, S2CID   119869484