Urceolus cyclostomus

Last updated

Contents

Urceolus cyclostomus
Stein 1878 Tafel XXIII Phialonema cropped.png
The first illustrations of Urceolus cyclostomus by Friedrich Stein (1878) [1]
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Phylum: Euglenozoa
Class: Euglenida
Order: Peranemida
Family: Peranemidae
Genus: Urceolus
Species:
U. cyclostomus
Binomial name
Urceolus cyclostomus
(Stein, 1878) Mereschkowsky, 1881
Synonyms
Phialonema cyclostomum
Stein, 1878

Urceolus cyclostomus is a species of heterotrophic flagellates. It was initially described by Friedrich Stein in 1878 as Phialonema cyclostomum, from an unknown location. Due to its morphological similarities to Urceolus alenizini , the author of the latter, Konstantin Mereschkowsky, transferred it to the genus Urceolus in 1881. Like other species of the genus, its cells have a neck and a wide aperture to a canal that hosts a single flagellum and its feeding apparatus. It is distinguished from other species by a significantly more rigid cell shape, among other traits. It can be found in the bottom sediment of freshwater and brackish water bodies, as a consumer of algae.

Description

Urceolus cyclostomus is a species of flagellate, a single-celled protist that exhibits an emergent flagellum for movement. [2] Members of the genus Urceolus are distinguished by the presence of a 'neck' at the anterior end of their oval-shaped cell, followed by a wide aperture or 'mouth' into a deep canal where the feeding groove and the flagellum originate. [3] In addition, like other euglenids, the cell surface or pellicle is spiral-striped. [1] In particular, U. cyclostomus is distinguished from other species of the genus by its more or less rigid and regular body shape, a less developed 'ingestive organelle' or feeding apparatus, and a more conspicuous 'hatching' (i.e. more pronounced stripes) of the pellicle. The posterior end of the cell is narrow, as is common in other euglenids. The cells are ovate, measuring 14–30 μm long and 4–18 μm wide. The cells move by crawling through the substrate, with the posterior end raised. The flagellum is around 1.5 times longer than the cell itself, 40–50 μm. [4] [2]

Distribution and habitat

Urceolus cyclostomus inhabits the bottom sediment of freshwater bodies with a wide distribution. It has been recorded in bogs of the Central Russian forest-steppe region [2] and numerous ponds in the Czech Republic, where it feeds on epipelic cyanobacteria and other kinds of algae. [5] It is also present in brackish waters, such as salt marshes and intertidal sand of England. [6] [7]

Taxonomy

The species Urceolus cyclostomus was initially described by German zoologist Friedrich Stein in his 1878 book Der Organismus der Infusionthiere. He named the species as Phialonema cyclostomum, without specifying the location in which it was discovered. He described this new genus and species through a series of illustrations. [1] Later, Russian biologist Konstantin Mereschkowsky compared Stein's illustrations of P. cyclostomum with the description of his own genus and species, Urceolus alenizini , which he published the previous year in 1877. [8] Mereschkowsky noticed the extreme similarities, particularly the 'neck' with a wide aperture where the flagellum originates. In 1881, he transferred this new species to Urceolus under the name of U. cyclostomus, rendering Phialonema a junior synonym of his genus. [3]

Related Research Articles

<span class="mw-page-title-main">Flagellate</span> Group of protists with at least one whip-like appendage

A flagellate is a cell or organism with one or more whip-like appendages called flagella. The word flagellate also describes a particular construction characteristic of many prokaryotes and eukaryotes and their means of motion. The term presently does not imply any specific relationship or classification of the organisms that possess flagella. However, the term "flagellate" is included in other terms which are more formally characterized.

<i>Euglena</i> Genus of unicellular flagellate eukaryotes

Euglena is a genus of single cell flagellate eukaryotes. It is the best known and most widely studied member of the class Euglenoidea, a diverse group containing some 54 genera and at least 200 species. Species of Euglena are found in fresh water and salt water. They are often abundant in quiet inland waters where they may bloom in numbers sufficient to color the surface of ponds and ditches green (E. viridis) or red (E. sanguinea).

<span class="mw-page-title-main">Euglenid</span> Class of protozoans

Euglenids or euglenoids are one of the best-known groups of flagellates. They are excavate eukaryotes of the phylum Euglenophyta, classified as class Euglenida or Euglenoidea. Euglenids are commonly found in freshwater, especially when it is rich in organic materials, with a few marine and endosymbiotic members. Many euglenids feed by phagocytosis, or strictly by diffusion. A monophyletic group known as Euglenophyceae have chloroplasts and produce their own food through photosynthesis. This group is known to contain the carbohydrate paramylon.

<span class="mw-page-title-main">Chlorarachniophyte</span> Group of algae

The chlorarachniophytes are a small group of exclusively marine algae widely distributed in tropical and temperate waters. They are typically mixotrophic, ingesting bacteria and smaller protists as well as conducting photosynthesis. Normally they have the form of small amoebae, with branching cytoplasmic extensions that capture prey and connect the cells together, forming a net. They may also form flagellate zoospores, which characteristically have a single subapical flagellum that spirals backwards around the cell body, and walled coccoid cells.

<i>Didinium</i> Genus of single-celled organisms

Didinium is a genus of unicellular ciliates with at least ten accepted species. All are free-living carnivores. Most are found in fresh and brackish water, but three marine species are known. Their diet consists largely of Paramecium, although they will also attack and consume other ciliates. Some species, such as D. gargantua, also feeds on non-ciliate protists, including dinoflagellates, cryptomonads, and green algae.

<i>Bodo saltans</i> Species of kinetoplastid flagellated phagotrophic protozoa

Bodo saltans is a free-living nonparasitic species of kinetoplastid flagellated phagotrophic protozoa that feed on bacteria. Bodo saltans cells have been reported in freshwater and marine environments.

<span class="mw-page-title-main">Protozoa</span> Single-celled eukaryotic organisms that feed on organic matter

Protozoa are a polyphyletic group of single-celled eukaryotes, either free-living or parasitic, that feed on organic matter such as other microorganisms or organic debris. Historically, protozoans were regarded as "one-celled animals".

<i>Peranema</i> Genus of protozoans

Peranema is a genus of free-living phagotrophic euglenids. There are more than 20 nominal species, varying in size between 8 and 200 micrometers. Peranema cells are gliding flagellates found in freshwater lakes, ponds and ditches, and are often abundant at the bottom of stagnant pools rich in decaying organic material. Although they belong to the class Euglenoidea, and are morphologically similar to the green Euglena, Peranema have no chloroplasts, and do not conduct autotrophy. Instead, they capture live prey, such as yeast, bacteria and other flagellates, consuming them with the help of a rigid feeding apparatus called a "rod-organ." Unlike the green euglenids, they lack both an eyespot (stigma), and the paraflagellar body (photoreceptor) that is normally coupled with that organelle. However, while Peranema lack a localized photoreceptor, they do possess the light-sensitive protein rhodopsin, and respond to changes in light with a characteristic "curling behaviour."

<i>Neobodo</i> Genus of protists

Neobodo are diverse protists belonging to the eukaryotic supergroup Excavata. They are Kinetoplastids in the subclass Bodonidae. They are small, free-living, heterotrophic flagellates with two flagella of unequal length used to create a propulsive current for feeding. As members of Kinetoplastids, they have an evident kinetoplast There was much confusion and debate within the class Kinetoplastid and subclass Bodonidae regarding the classification of the organism, but finally the new genera Neobodo was proposed by Keith Vickerman. Although they are one of the most common flagellates found in freshwater, they are also able to tolerate saltwater Their ability to alternate between both marine and freshwater environments in many parts of the world give them a “cosmopolitan” character. Due to their relatively microscopic size ranging between 4–12 microns, they are further distinguished as heterotrophic nanoflagellates. This small size ratio limits them as bacterivores that swim around feeding on bacteria attached to surfaces or in aggregates.

Petalomonas is a genus of phagotrophic, flagellated euglenoids. Phagotrophic euglenoids are one of the most important forms of flagellates in benthic aquatic systems, playing an important role in microbial food webs. The traits that distinguish this particular genus are highly variable, especially at higher taxa. However, general characteristics such as a rigid cell shape and single emergent flagellum can describe the species among this genus.

Heteronema is a genus of phagotrophic, flagellated euglenoids that are most widely distributed in fresh water environments. This genus consists of two very distinguishable morphogroups that are phylogenetically closely related. These morphogroups are deciphered based on shape, locomotion and other ultrastructural traits. However, this genus does impose taxonomic problems due to the varying historical descriptions of Heteronema species and its similarity to the genus Paranema. The species H. exaratum, was the first heteronemid with a skidding motion to be sequenced, which led to the discovery that it was not closely related to H. scaphrum, contrary to what was previously assumed, but instead to a sister group of primary osmotrophs. This suggests that skidding heteronemids can also be distinguished phylogenetically, being more closely related to Anisoma, Dinema and Aphageae, than to other species within Heteronema.

Colponema is a genus of single-celled flagellates that feed on eukaryotes in aquatic environments and soil. The genus contains 6 known species and has not been thoroughly studied. Colponema has two flagella which originate just below the anterior end of the cell. One extends forwards and the other runs through a deep groove in the surface and extends backwards. Colponema is a predator that feeds on smaller flagellates using its ventral groove. Like many other alveolates, they possess trichocysts, tubular mitochondrial cristae, and alveoli. It has been recently proposed that Colponema may be the sister group to all other alveolates. The genus could help us understand the origin of alveolates and shed light on features that are ancestral to all eukaryotes.

<i>Orciraptor</i> Genus of predatorial protists

Orciraptor is a genus of heterotrophic protists, containing the single species Orciraptor agilis. It belongs to the family Viridiraptoridae, in the phylum Cercozoa.

Heliorapha is a genus of heliozoan protists, amoeboid eukaryotes with stiff axopodia radiating from their cells. It contains one species, Heliorapha azurina. It is classified within a monotypic family Helioraphidae inside the actinophryids, a group of heliozoa that belong to the Ochrophyta along with other protists such as diatoms and brown algae.

<i>Urceolus</i> Genus of flagellates

Urceolus is a genus of heterotrophic flagellates belonging to the Euglenozoa, a phylum of single-celled eukaryotes or protists. Described by Russian biologist Konstantin Mereschkowsky in 1877, its type species is Urceolus alenizini. Species of this genus are characterized by deformable flask-shaped cells that exhibit at least one flagellum that is active at the tip, arising from a neck-like structure that also hosts the feeding apparatus. They are found in a variety of water body sediments across the globe. According to evolutionary studies, Urceolus belongs to a group of Euglenozoa known as peranemids, closely related to the euglenophyte algae.

<i>Urceolus alenizini</i> Species of flagellate

Urceolus alenizini is a species of flagellates. It was described by Konstantin Mereschkowsky in 1877 as the type species of the genus Urceolus. It is a rare species only recorded by its author once in the White Sea, in northern Russia. It is distinguished by other members of the genus by the lack of spiral stripes in its cell surface.

<i>Ploeotia</i> Genus of flagellates

Ploeotia is a genus of heterotrophic flagellates belonging to the Euglenida, a diverse group of flagellated protists in the phylum Euglenozoa. Species of Ploeotia are composed of rigid cells exhibiting two flagella. The genus was described by Félix Dujardin in 1841.

<span class="mw-page-title-main">Peranemid</span> Group of flagellates

The peranemids are a group of phagotrophic flagellates, single-celled eukaryotes or protists. They belong to the Euglenida, a diverse lineage of flagellates that contains the closely related euglenophyte algae. Like these algae, peranemids have flexible cells capable of deformation or metaboly, and have one or two flagella in the anterior region of the cell. They are classified as family Peranemidae (ICZN) or Peranemataceae (ICBN) within the monotypic order Peranemida (ICZN) or Peranematales (ICBN).

<span class="mw-page-title-main">Anisonemia</span> Group of flagellates

Anisonemia is a clade of single-celled protists belonging to the phylum Euglenozoa, relatives of the Euglenophyceae algae. They are flagellates, with two flagella for locomotion. Anisonemia includes various phagotrophic species and a group of primary osmotrophic protists known as Aphagea.

Urceolus cornutus is a species of heterotrophic flagellates present in marine environments. Described in 1990 by Jacob Larsen and David Patterson from sediment samples off the coast of Fiji, it is distinguished from other species by very fine and compact pellicle stripes that follow an S-helix shape, and a collar with a regular or symmetrical outline.

References

  1. 1 2 3 Friedrich Ritter von Stein (1878). Der Organismus der Infusionsthiere. III. Abtheilung. Der Organismus der Flagellaten nach eigenen Forschungen in Systematischer Reihenfolge. I. Hälfte, Den noch nicht abgeschlossenen allgemeinen Theil nebst Erklärung der sämmtlichen Abbildungen enthaltend [The Infusoria Organism. Volume III. The Flagellate Organism according to our own research in a systematic order. Part I, Containing the general part, which has not yet been completed, along with an explanation of all the illustrations] (in German). Lepizig: W. Engelmann. plate XXIII, figures 42–48. doi: 10.5962/bhl.title.3933 . OCLC   475289589 . Retrieved 2024-04-17.
  2. 1 2 3 K. I. Prokina (July 2019). "Heterotrophic Flagellates from Sphagnum Bogs and Terrace-Forest and Floodplain Water Bodies of the Central Russian Forest-Steppe". Inland Water Biology. 12 (3): 276–289. doi:10.1134/S199508291903012X. ISSN   1995-0829. Wikidata   Q119981891.
  3. 1 2 C. Mereschkowsky (1881). "XVIII.—On some new or little-known Infusoria". Annals and Magazine of Natural History . Fifth series. 7 (39): 209–219. doi:10.1080/00222938109459496.
  4. Jacob Larsen (December 1987). "Algal studies of the Danish Wadden Sea. IV. A taxonomic study of the interstitial euglenoid flagellates". Nordic Journal of Botany . 7 (5): 589–607. doi:10.1111/J.1756-1051.1987.TB02028.X. ISSN   0107-055X. Wikidata   Q104049037.
  5. Petr Hašler; Jana Štěpánková; Jana Špačková; et al. (1 September 2008). "Epipelic cyanobacteria and algae: a case study from Czech ponds". Fottea (Praha). 8 (2): 133–146. doi:10.5507/FOT.2008.012. ISSN   1802-5439. Wikidata   Q119649001.
  6. Marjorie G. Webb (1956). "An Ecological Study of Brackish Water Ciliates". Journal of Animal Ecology. 25 (1): 148–175. doi:10.2307/1856.
  7. James B. Lackey; Elsie W. Lackey (1963). "Microscopic Algae And Protozoa In The waters near Plymouth in August 1962". Journal of the Marine Biological Association of the United Kingdom. 43 (3): 797–805. doi:10.1017/S0025315400025698.
  8. K. S. Mereschkowsky (1877). "Etyudy nad prosteyshimi zhivotnymi severa Rossii" Этюды над простейшими животными севера России[Studies on protozoa of northern Russia]. Trudy S.-Peterburgskago Obshchestva EstestvoispytateleiТруды Санкт-Петербургскаго Общества естествоиспытателей[Proceedings of the St. Petersburg Society of Naturalists] (in Russian). 8: 203–376.