Vobasine

Last updated
Vobasine
Vobasine.svg
Names
IUPAC name
Methyl (1S,14R,15E,18S)-15-ethylidene-17-methyl-12-oxo-10,17-diazatetracyclo[12.3.1.03,11.04,9]octadeca-3(11),4,6,8-tetraene-18-carboxylate
Preferred IUPAC name
Methyl (19E)-3-oxovobasan-17-oate
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
KEGG
PubChem CID
  • InChI=1S/C21H24N2O3/c1-4-12-11-23(2)17-9-15-13-7-5-6-8-16(13)22-20(15)18(24)10-14(12)19(17)21(25)26-3/h4-8,14,17,19,22H,9-11H2,1-3H3/b12-4-/t14-,17-,19-/m0/s1
    Key: TYPMTMPLTVSOBU-XJHWFDBESA-N
  • C/C=C\1/CN([C@H]2CC3=C(C(=O)C[C@@H]1[C@@H]2C(=O)OC)NC4=CC=CC=C34)C
Properties
C21H24N2O3
Molar mass 352.434 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Vobasine is a naturally occurring monoterpene indole alkaloid found in several species in the genus Tabernaemontana including Tabernaemontana divaricata . [1]

Contents

History

Vobasine was first reported by Renner in 1959 after its isolation from Voacanga africana . [2] The two structurally related compounds, dregamine and tabernaemontanine, where its alkene (=CHCH3) sidechain was reduced to ethyl groups in two configurations, had their relationship confirmed in the 1970s. [3] [4] [5] Vobasine has been found in many plants of the dogbane (Apocynaceae) family including Tabernaemontana dichotoma . [6] [7]

Synthesis

Biosynthesis

As with other Indole alkaloids, the biosynthesis of vobasine starts from the amino acid tryptophan. This is converted into strictosidine before further elaboration. [8]

Chemical synthesis

The synthesis of alkaloids with the same carbon skeleton as vobasine began in the 1960s [9] and has continued, with some work providing enantiospecific approaches to closely related compounds. [10]

Natural occurrence

Voacanga africana, a source of vobasine Voacanga Africana 06.jpg
Voacanga africana, a source of vobasine

Vobasine is found commonly in the genera Tabernaemontana and Voacanga , including the species Ervatamia hirta , [11] Tabernaemontana elegans, [12] Tabernaemontana divaricata [13] [14] and Voacanga africana. [2]

Biochemistry

Plant metabolites have been of interest for their possible biological activity and alkaloids in particular are major subjects for ethnobotanical research. [15] [16] Vobasine has been studied, for example as a potential anti-cancer agent [17] and for its hypotensive activity. [18] However, the alkaloid itself has not been developed as a drug.



Toxicity

Very high dose of vobasine at around 300 mg/kg may cause death through CNS and respiratory depression. [19]

See also

Related Research Articles

<span class="mw-page-title-main">Voacangine</span> Chemical compound

Voacangine is an alkaloid found predominantly in the root bark of the Voacanga africana tree, as well as in other plants such as Tabernanthe iboga, Tabernaemontana africana, Trachelospermum jasminoides, Tabernaemontana divaricata and Ervatamia yunnanensis. It is an iboga alkaloid which commonly serves as a precursor for the semi-synthesis of ibogaine. It has been demonstrated in animals to have similar anti-addictive properties to ibogaine itself. It also potentiates the effects of barbiturates. Under UV-A and UV-B light its crystals fluoresce blue-green, and it is soluble in ethanol.

<span class="mw-page-title-main">Indole alkaloid</span> Class of alkaloids

Indole alkaloids are a class of alkaloids containing a structural moiety of indole; many indole alkaloids also include isoprene groups and are thus called terpene indole or secologanin tryptamine alkaloids. Containing more than 4100 known different compounds, it is one of the largest classes of alkaloids. Many of them possess significant physiological activity and some of them are used in medicine. The amino acid tryptophan is the biochemical precursor of indole alkaloids.

<i>Tabernaemontana corymbosa</i> Species of plant

Tabernaemontana corymbosa is a species of plant in the family Apocynaceae. It is found in Brunei, China, Indonesia, Laos, Malaysia, Myanmar, Singapore, Thailand, and Vietnam. Glossy green leaves and faintly sweet scented flower. Flowers continuously all year. Frost tolerant. Grows to about 2 metres. Likes full sun to part shade. A number of cultivars are available.

Strictosidine synthase (EC 4.3.3.2) is an enzyme in alkaloid biosynthesis that catalyses the condensation of tryptamine with secologanin to form strictosidine in a formal Pictet–Spengler reaction:

<span class="mw-page-title-main">Coronaridine</span> Chemical compound

Coronaridine, also known as 18-carbomethoxyibogamine, is an alkaloid found in Tabernanthe iboga and related species, including Tabernaemontana divaricata for which it was named.

<span class="mw-page-title-main">Ibogamine</span> Anti-convulsant, anti-addictive CNS stimulant alkaloid

Ibogamine is an anti-convulsant, anti-addictive, CNS stimulant alkaloid found in Tabernanthe iboga and Crepe Jasmine. Basic research related to how addiction affects the brain has used this chemical.

<span class="mw-page-title-main">Voacamine</span> Chemical compound

Voacamine, also known under the older names voacanginine and vocamine, is a naturally occurring dimeric indole alkaloid of the secologanin type, found in a number of plants, including Voacanga africana and Tabernaemontana divaricata. It is approved for use as an antimalarial drug in several African countries. Voacamine exhibits cannabinoid CB1 receptor antagonistic activity.

<i>Tabernaemontana elegans</i> African tree species

Tabernaemontana elegans, the toad tree, is a shrub or small tree in the family Apocynaceae. It is native to eastern Africa.

<span class="mw-page-title-main">Akuammicine</span> Alkaloid

Akuammicine is a monoterpene indole alkaloid of the Vinca sub-group. It is found in the Apocynaceae family of plants including Picralima nitida, Vinca minor and the Aspidosperma.

<span class="mw-page-title-main">Affinine</span> Chemical compound

Affinine is a monoterpenoid indole alkaloid which can be isolated from plants of the genus Tabernaemontana. Structurally it can be considered a member of the vobasine alkaloid family and may be synthesized from tryptophan. Limited pharmacological testing has indicated that it may be an effective inhibitor of both acetylcholinesterase and butyrylcholinesterase.

<span class="mw-page-title-main">Affinisine</span> Chemical compound

Affinisine is a monoterpenoid indole alkaloid which can be isolated from plants of the genus Tabernaemontana. Structurally, it can be considered a member of the sarpagine alkaloid family and may be synthesized from tryptophan via a Pictet-Spengler reaction.

<span class="mw-page-title-main">Stemmadenine</span> Chemical compound

Stemmadenine is a terpene indole alkaloid. Stemmadenine is believed to be formed from preakuammicine by a carbon-carbon bond cleavage. Cleavage of a second carbon-carbon bond is thought to form dehydrosecodine. The enzymes forming stemmadenine and using it as a substrate remain unknown to date. It is thought to be intermediate compound in many different biosynthetic pathways such as in Aspidosperma species. Many alkaloids are proposed to be produced through intermediate stemmadenine. Some of them are:

<span class="mw-page-title-main">Apparicine</span> Chemical compound

Apparicine is a monoterpenoid indole alkaloid. It is named after Apparicio Duarte, a Brazilian botanist who studied the Aspidosperma species from which apparicine was first isolated. It was the first member of the vallesamine group of alkaloids to be isolated and have its structure established, which was first published in 1965. It has also been known by the synonyms gomezine, pericalline, and tabernoschizine.

<span class="mw-page-title-main">Tabernaemontanine</span> Chemical compound

Tabernaemontanine is a naturally occurring monoterpene indole alkaloid found in several species in the genus Tabernaemontana including Tabernaemontana divaricata.

<span class="mw-page-title-main">Dregamine</span> Chemical compound

Dregamine is a naturally occurring monoterpene indole alkaloid found in several species in the genus Tabernaemontana including Ervatamia hirta and Tabernaemontana divaricata.

<span class="mw-page-title-main">Conophylline</span> Chemical compound

Conophylline is a autophagy inducing vinca alkaloid found in several species of Tabernaemontana including Ervatamia microphylla and Tabernaemontana divaricata. Among its many functional groups is an epoxide: the compound where that ring is replaced with a double bond is called conophyllidine and this co-occurs in the same plants.

<span class="mw-page-title-main">Voacristine</span> Chemical compound

Voacristine is a indole alkaloid occurring in Voacanga and Tabernaemontana genus. It is also an iboga type alkaloid.

<span class="mw-page-title-main">Vinervine</span> Vinca alkaloid

Vinervine is a monoterpene indole alkaloid of the Vinca sub-group. It is a derivative of akuammicine, with one additional hydroxy (OH) group in the indole portion, hence it is also known as 12-hydroxyakuammicine.

<span class="mw-page-title-main">Conopharyngine</span> Chemical compound

Conopharyngine is the major alkaloid present in the leaves and stem-bark of Tabernaemontana pachysiphon and Conopharyngia durissima. It is closely related voacangine and coronaridine. Conopharyngine pseudoindoxyl, a derivative of it, is also found in the same plant Tabernaemontana pachysiphon.

Apocynaceae alkaloids are natural products found in the plant family of the dogbane family (Apocynaceae).

References

  1. Saxton, J. E. (1987). "Recent progress in the chemistry of indole alkaloids and mould metabolites". Natural Product Reports. 4: 591. doi:10.1039/NP9870400591.
  2. 1 2 Renner, U. (1959). "Vobasin und Voacryptin, zwei neue Alkaloide aus Voacanga africana Stapf". Experientia. 15 (5): 185–186. doi:10.1007/BF02158691. S2CID   28675532.
  3. Renner, U.; Prins, D. A. (1961). "Voacanga-Alkaloide V. Verknüpfung von Vobasin mit Dregamin und Tabernaemontanin". Experientia. 17 (5): 209. doi:10.1007/BF02160617. PMID   13740864. S2CID   35816536.
  4. Knox, JR; Slobbe, J. (1975). "Indole alkaloids from Ervatamia orientalis. III. The configurations of the ethyl side chains of dregamine and tabernaemontanine and some further chemistry of the vobasine group". Australian Journal of Chemistry. 28 (8): 1843. doi:10.1071/CH9751843.
  5. Bombardelli, Ezio; Bonati, Attilio; Gabetta, Bruno; Martinelli, Ernesto M.; Mustich, Giuseppe; Danieli, Bruno (1976). "Structures of tabernaelegantines A–D and tabernaelegantinines a and B, new indole alkaloids from Tabernaemontana elegans". Journal of the Chemical Society, Perkin Transactions 1 (13): 1432–1438. doi:10.1039/P19760001432.
  6. Raffauf, Robert F.; Flagler, M. B. (1960). "Alkaloids of the Apocynaceae". Economic Botany. 14: 37–55. doi:10.1007/BF02859365. S2CID   29538706.
  7. Perera, Premila; Samuelsson, Gunnar; Van Beek, Teris; Verpoorte, Robert (1983). "Tertiary Indole Alkaloids from Leaves of Tabernaemontana dichotoma". Planta Medica. 47 (3): 148–150. doi:10.1055/s-2007-969974. PMID   17404903.
  8. Edwin Saxton, J. (15 September 2009). Indoles, Part 4: The Monoterpenoid Indole Alkaloids. ISBN   9780470188446.
  9. Shioiri, T.; Yamada, S. (1968). "Studies in the indole series—IV". Tetrahedron. 24 (11): 4159–4175. doi:10.1016/0040-4020(68)88178-5. PMID   5654925.
  10. Yang, Jie; Rallapalli, Sundari K.; Cook, James M. (2010). "The first enantiospecific total synthesis of the 3-oxygenated sarpagine indole alkaloids affinine and 16-epiaffinine, as well as vobasinediol and 16-epivobasinediol". Tetrahedron Letters. 51 (5): 815–817. doi:10.1016/j.tetlet.2009.12.002.
  11. Clivio, Pascale; Richard, Bernard; Deverre, Jean-Robert; Sevenet, Thierry; Zeches, Monique; Le Men-Oliver, Louisette (January 1991). "Alkaloids from leaves and root bark of Ervatamia hirta". Phytochemistry. 30 (11): 3785–3792. doi:10.1016/0031-9422(91)80111-D.
  12. Van Der Heijden, R.; Brouwer, R.L.; Verpoorte, R.; Wijnsma, R.; Van Beek, T.A.; Harkes, A.A.; Svendsen, A.Baerheim (1986). "Indole alkaloids from a callus culture of Tabernaemontana elegans". Phytochemistry. 25 (4): 843–846. doi:10.1016/0031-9422(86)80013-9.
  13. Kam, Toh-Seok; Pang, Huey-Shen; Lim, Tuck-Meng (2003). "Biologically active indole and bisindole alkaloids from Tabernaemontana divaricata". Organic & Biomolecular Chemistry. 1 (8): 1292–1297. doi:10.1039/B301167D. PMID   12929658.
  14. Kulshreshtha, Ankita; Saxena, Jyoti (2019). "Alkaloids and Non Alkaloids of Tabernaemontana divaricata" (PDF). International Journal of Research and Review. 6 (8): 517–524.
  15. Pratchayasakul W, Pongchaidecha A, Chattipakorn N, Chattipakorn S (April 2008). "Ethnobotany & ethnopharmacology of Tabernaemontana divaricata" (PDF). The Indian Journal of Medical Research. 127 (4): 317–35. PMID   18577786.
  16. Babiaka, Smith B.; Ntie-Kang, Fidele; Lifongo, Lydia L.; Ndingkokhar, Bakoh; Mbah, James A.; Yong, Joseph N. (2015). "The chemistry and bioactivity of Southern African flora I: A bioactivity versus ethnobotanical survey of alkaloid and terpenoid classes". RSC Advances. 5 (54): 43242–43267. Bibcode:2015RSCAd...543242B. doi:10.1039/C5RA01912E.
  17. Ferreira, Maria-José U.; Paterna, Angela (2019). "Monoterpene indole alkaloids as leads for targeting multidrug resistant cancer cells from the African medicinal plant Tabernaemontana elegans". Phytochemistry Reviews. 18 (4): 971–987. doi:10.1007/s11101-019-09615-1. S2CID   184483520.
  18. Perera, Premila; Kanjanapothy, Duangta; Sandberg, Finn; Verpoorte, Robert (1985). "Muscle relaxant activity and hypotensive activity of some tabernaemontana alkaloids". Journal of Ethnopharmacology. 13 (2): 165–173. doi:10.1016/0378-8741(85)90004-2. PMID   4021514.
  19. "Ethnobotany and ethnopharmacology of Tabernaemontana divaricata".

Further reading