Waffle-iron filter

Last updated
An illustrative cutaway of a typical waffle-iron filter design Waffle-iron filter.png
An illustrative cutaway of a typical waffle-iron filter design

A waffle-iron filter is a type of waveguide filter used at microwave frequencies for signal filtering. It is a variation of the corrugated-waveguide filter but with longitudinal slots cut through the corrugations resulting in an internal structure that has the appearance of a waffle-iron.

Contents

Waffle-iron filters are particularly suitable where both a wide passband, and a wide stopband free of spurious transmission modes, are required. They also have a high power-handling capability. Applications include suppressing the harmonic output of transmitters and the design of wide-band diplexers. They are also used in industrial microwave manufacturing processes to prevent the escape of microwave radiation from the microwave chamber. Filters with an analogous design are now appearing in photonics, but, due to the higher frequency, at a much smaller scale. This small size allows them to be incorporated into integrated circuits.

Design techniques for waffle-iron filters include image-parameter methods, network synthesis methods and numerical analysis methods. Network synthesis is a more advanced method than image-parameter techniques but the latter can still be used where a simple repeated-pattern design is desired. Numerical methods can be used to analyse either design.

Description

The waffle-iron filter was invented by Seymour B. Cohn at Stanford Research Institute in 1957. [1] The basis for the filter is the corrugated-waveguide filter. This consists of a series of ridges, or corrugations, across the width of the filter. There are corrugations inside the waveguide on both the top and bottom surfaces. The rising and descending ridges are aligned with each other but do not meet in the middle; there is a gap in between. In the waffle-iron filter there are, in addition, slots cut through the ridges down the length of the waveguide. This leaves a matrix of square islands, or teeth, on the top and bottom surfaces. [2]

Waffle-iron filters are, in essence, low-pass filters but like all waveguide devices will not transmit anything below the waveguide cutoff frequency. Waffle-iron filters are used where both a wide passband with low insertion loss, and a wide (sometimes very wide) stopband are needed. They are particularly good where suppression of spurious modes is required. [3]

Waffle-iron filters have been built with a 10 GHz wide stopband and 60 dB attenuation. [4] Even wider stopbands are possible with a relaxed attenuation specification. [5]

Operation

One of the performance issues addressed by the waffle-iron filter is that in many waveguide filters the attenuation is dependent on the transmission modes of the incident signal and some filters can be quite bad at suppressing spurious modes which may be contained in this signal. For instance, with the corrugated waveguide filter, on which the waffle-iron filter is based, attenuation of TEn0 modes in the stopband is strongly dependent on the mode number. This is not the case with the waffle-iron filter which attenuates all TEn0 modes nearly equally up to a certain frequency. The limit is the frequency at which the distance between the metal teeth is greater than half the free-space wavelength of the signal. The reason for the waffle-iron design's good performance in this respect is that the distance between the teeth is the same in both the longitudinal and transverse directions and nearly the same in all directions in between. This makes the waffle-iron nearly isotropic to TEM waves in all these directions. Since any TEn0 mode wave can be decomposed into two TEM mode waves travelling in different diagonal directions, all TEn0 modes are affected nearly equally. [6]

Incident signals containing TM modes above a certain frequency can generate modes which propagate along the longitudinal slots with the slots themselves acting as waveguides. The point at which this can start to happen is the frequency at which the height of the slot is greater than half the free-space wavelength of the signal. If this frequency is above the required stopband of the filter the effect is of no consequence. Otherwise, steps outside the filter are needed to suppress these modes and can be incorporated into the end-matching sections. [7]

Other design criteria will usually result in a filter which does not match the waveguides to which it is to be connected at its input and output. There are many structures that can be used for matching but a useful one here is the stepped-impedance transformer which has the added advantage of helping to suppress the unwanted slot modes. [8]

Applications

A common application of waffle-iron filters is to remove the harmonics of transmitters, such as high power radar, before applying to the antenna. Legislation in most jurisdictions requires strict limits on out-of-band transmissions since these can cause serious interference with other stations. This is an application that usually requires a very wide stopband, a characteristic of waffle-iron filters. For instance, to remove all harmonics up to the fifth it is necessary for a low-pass filter to have a stopband greater than three times the passband. [9]

The wide-band nature of waffle-iron filters finds applications in satellite communications. A satellite earth station may have multiple diplexers connected to a multi-band antenna feeder. Each diplexer delivers a wide-band signal in a different band and it is essential that its signal does not contain out-of-band components, particularly harmonics. These can seriously interfere with, or even stop entirely, communication in another band. The diplexer must therefore have a stopband that is even wider than the passband. For this reason, as well as the other advantages of waffle-irons, these diplexers are commonly made to a waffle-iron design. [10]

Waffle-iron filters are used in industrial microwave processes. The many industrial applications of microwave energy include drying of food products and industrial films, heating, such as in polyurethane foam production, melting, rendering, sterilising, and vulcanisation. In high-volume production the process is continuous necessitating openings to the microwave chamber where the product can be fed in and exit. Steps need to be taken to prevent unsafe levels of microwave radiation escaping from these apertures which are often large to accommodate the product. It is usual to line the product feed ducts with microwave absorbent material for this purpose. However, the absorbed microwaves have a heating effect and this can be severe enough to damage the absorbent material. Waffle-iron filters are a useful alternative because the product can be passed between the filter's teeth. An ideal filter will reflect all the unwanted radiation rather than absorbing it so will not suffer from overheating. This is an example of a filter being used in a choke application. In some processes both techniques are used simultaneously. The waffle-iron is placed nearest the microwave chamber to first reduce the energy to a level which will not cause the absorbent lining to overheat. The absorbent lining then removes the small residue. [11]

Design

Waffle-iron filter teeth types. Bottom rows only are shown. A: square teeth. B: rounded teeth. C: circular teeth with TE0n mode suppression wires. Waffle-iron round teeth.png
Waffle-iron filter teeth types. Bottom rows only are shown. A: square teeth. B: rounded teeth. C: circular teeth with TE0n mode suppression wires.

The number of teeth, their size, and the gap between them are all design parameters that can be used to control the design of the filter. As an example, a filter with a 3:1 stopband might have five teeth across the width of the waveguide. The number of rows of teeth down the length of the waveguide primarily affects the stopband attenuation. The more rows of teeth, the better the attenuation, each row being equivalent to a lumped element circuit filter section. A filter with ten rows of teeth has a theoretical stopband rejection of around 80 dB and one with seven rows around 60 dB. [12]

The earliest waffle-iron filters were designed with the image parameter method of filter design. Cohn's original data for the corrugated filter could also be applied to the waffle-iron with only a small adjustment of one parameter. An alternative approach to using Cohn's empirical data, but still an image parameter design, is due to Marcuvitz who used a waveguide T-junction equivalent circuit to represent corrugations and this method was later extended by others to waffle-irons. [13]

One of the main drawbacks of the image parameter design method in this, as in other, filters is that the impedance match at the terminations is not good. This usually requires that impedance matching sections are provided at the input and output. These usually take the form of multi-section stepped impedance transformers. These add considerably to the overall length of the filter. [14] A small improvement to matching can be had by starting and ending the filter on a half-space instead of a full tooth or space. The lumped circuit equivalent of this is T-half-sections terminating the filter at either end. Starting and ending on a half-tooth instead of a half space is the equivalent of Π-half-sections. [15]

Direct synthesis avoids many of the problems of the image parameter method. Not only does it take better account of the terminal impedances but the designer has additional degrees of freedom allowing improved matching. The size and gaps of the teeth are tapered in this method of design. That is, the teeth can be different sizes according to their position in the filter, compared with an image design where all sections are identical. With this approach, the original specification for passband and stopband can be kept while simultaneously improving the impedance matching. The stepped impedance transformers can be dispensed with, or at least significantly reduced in size. [16]

Synthesis methods allow better control of the precise filter response. A common response function used by filter designers is the Chebyshev filter which trades steepness of the transition band for passband ripple. However the Chebyshev response is not always the best choice for waffle-iron filters. Low-pass waveguide filters do not pass frequencies all the way down to zero because of the waveguide cutoff effect. A better choice is the Achieser-Zolotarev filter. This filter is based on Zolotarev polynomials (which include the Chebyshev polynomials as a special case) discovered by Yegor Ivanovich Zolotarev. The Zolotarev response has a stopband at low frequency, the cutoff of which can be controlled by the designer so it is not detrimental in a waveguide filter. The advantage of the Zolotarev response is that it results in a filter with a better impedance match to the connecting waveguides compared to the Chebyshev filter or image-parameter filters. [17]

Waffle-iron filter with two-section matching transformer (with a tuning-screw in each section). There is similar transformer on the other side of the waffle-iron section. Waffle-iron filter.JPG
Waffle-iron filter with two-section matching transformer (with a tuning-screw in each section). There is similar transformer on the other side of the waffle-iron section.

Another design approach, particularly suitable for CAD because it is a numerical method, is to decompose the filter into a number of finite elements. These elements are a large number of simple steps and ridges. A number of methods are available to analyse the individual elements. The mode matching technique expands the field equations of the element into a series of eigenfunctions and then for each mode matches the field at the interface between elements. [18] The Galerkin method expands the field equations into polynomial functions such as Gegenbauer polynomials or Chebyshev polynomials. These methods can be mixed according to what is convenient for a particular type of element. Whichever analysis method is used, the final output needed is the scattering parameters matrix for each element. The overall filter response is then found from the combined scattering matrix of all the individual element matrices. This method is analytic rather than synthetic, that is, a trial design must first exist in order to be analysed unlike synthesis methods where the starting point is a prescribed transfer function from which a design is synthesised. [19]

TE0n modes should not, in theory, be excited in the waffle-iron filter because of its vertical symmetry about the centre-line. However, in practice they can be caused by poorly mating waveguide flanges or misaligned teeth. These spurious modes can be suppressed by fitting thin wires across the width of the filter in the space between the teeth on the vertical centre-line of the waveguide. This can be a better solution than over-engineering the components to high precision and results in a more robust design. [20]

Multiple unit filters

Very wide stopbands can be achieved by cascading several waffle-iron filter units together. Each unit is designed for a stopband in different, but overlapping, ranges. The filter with the highest frequency stopband has the smallest, and greatest number, of teeth. The units are connected together with λ/4 impedance transformer sections of waveguide in order of progressively higher frequency operation. Since the impedance transformers are operating at different frequencies the ones connected to the units with smallest teeth are shorter than those connected to units with larger teeth. Matthaei gives an example of a three unit waffle-iron filter designed to stop all harmonics of the passband from the second to the tenth – a combined stopband of 2.2 GHz to 13.7 GHz with a rejection of 60 dB. [21]

Using network synthesis design techniques the need for multiple units can be reduced or eliminated. If tapering of the teeth is allowed, a two-unit design can often be reduced to a single unit with the same wide stopband. This approach can halve the length of the complete filter. [22]

High power

At high power, arcing can occur at the corners of the filter teeth due to strong electric fields being present at sharp corners. This limits the power-handling capability of the filter. The effect can be mitigated by rounding the edges of the teeth. Completely circular teeth are best of all for power handling. Circular teeth will handle about 1.4 times the power capability of square teeth without arcing. For instance Matthaei describes a 1.2–1.64 GHz passband filter with rounded teeth and a wide stopband with a power-handling capability of 1.4 MW. A similar filter with circular teeth, on the other hand, can handle 2 MW. Using power dividers to connect filters in parallel and then combining their outputs can provide even greater power handling. [23]

Photonics

Filter structures that are analogous to the waffle-iron filter are used in photonics but operate at a much higher frequency and are much smaller than those used in electronics. Like the waffle-iron, these structures have good suppression of unwanted transmission modes. A filter operating in the 0.1 to 4.0 THz band has been built using parallel-plate waveguide (PPWG [24] ) technology with 50 dB of rejection in the stopband. The filter was constructed of two plates of highly polished aluminium spaced 100 μm apart. The teeth consisted of gold-sputtered aluminium cylinders on a silicon die. In this design it is not convenient to provide a gap through the centre of the teeth as is done in the microwave version. Instead, the air gap is provided between the top of the teeth and one of the PPWG plates. [25]

These filters can be made using the standard semiconductor industry photolithography manufacturing techniques. Consequently, they are suitable for incorporating into on-chip integrated circuits, as is PPWG technology in general. [26]

Related Research Articles

<span class="mw-page-title-main">Cutoff frequency</span> Frequency response boundary

In physics and electrical engineering, a cutoff frequency, corner frequency, or break frequency is a boundary in a system's frequency response at which energy flowing through the system begins to be reduced rather than passing through.

Chebyshev filters are analog or digital filters that have a steeper roll-off than Butterworth filters, and have either passband ripple or stopband ripple. Chebyshev filters have the property that they minimize the error between the idealized and the actual filter characteristic over the operating frequency range of the filter, but they achieve this with ripples in the passband. This type of filter is named after Pafnuty Chebyshev because its mathematical characteristics are derived from Chebyshev polynomials. Type I Chebyshev filters are usually referred to as "Chebyshev filters", while type II filters are usually called "inverse Chebyshev filters". Because of the passband ripple inherent in Chebyshev filters, filters with a smoother response in the passband but a more irregular response in the stopband are preferred for certain applications.

<span class="mw-page-title-main">Stub (electronics)</span> Short electrical transmission line

In microwave and radio-frequency engineering, a stub or resonant stub is a length of transmission line or waveguide that is connected at one end only. The free end of the stub is either left open-circuit, or short-circuited. Neglecting transmission line losses, the input impedance of the stub is purely reactive; either capacitive or inductive, depending on the electrical length of the stub, and on whether it is open or short circuit. Stubs may thus function as capacitors, inductors and resonant circuits at radio frequencies.

Radio frequency (RF) and microwave filters represent a class of electronic filter, designed to operate on signals in the megahertz to gigahertz frequency ranges. This frequency range is the range used by most broadcast radio, television, wireless communication, and thus most RF and microwave devices will include some kind of filtering on the signals transmitted or received. Such filters are commonly used as building blocks for duplexers and diplexers to combine or separate multiple frequency bands.

<span class="mw-page-title-main">Otto Julius Zobel</span> American electrical engineer (1887–1970)

Otto Julius Zobel was an electrical engineer who worked for the American Telephone & Telegraph Company (AT&T) in the early part of the 20th century. Zobel's work on filter design was revolutionary and led, in conjunction with the work of John R. Carson, to significant commercial advances for AT&T in the field of frequency-division multiplex (FDM) telephone transmissions.

m-derived filters or m-type filters are a type of electronic filter designed using the image method. They were invented by Otto Zobel in the early 1920s. This filter type was originally intended for use with telephone multiplexing and was an improvement on the existing constant k type filter. The main problem being addressed was the need to achieve a better match of the filter into the terminating impedances. In general, all filters designed by the image method fail to give an exact match, but the m-type filter is a big improvement with suitable choice of the parameter m. The m-type filter section has a further advantage in that there is a rapid transition from the cut-off frequency of the passband to a pole of attenuation just inside the stopband. Despite these advantages, there is a drawback with m-type filters; at frequencies past the pole of attenuation, the response starts to rise again, and m-types have poor stopband rejection. For this reason, filters designed using m-type sections are often designed as composite filters with a mixture of k-type and m-type sections and different values of m at different points to get the optimum performance from both types.

A composite image filter is an electronic filter consisting of multiple image filter sections of two or more different types.

Filters designed using the image impedance methodology suffer from a peculiar flaw in the theory. The predicted characteristics of the filter are calculated assuming that the filter is terminated with its own image impedances at each end. This will not usually be the case; the filter will be terminated with fixed resistances. This causes the filter response to deviate from the theoretical. This article explains how the effects of image filter end terminations can be taken into account.

<span class="mw-page-title-main">Prototype filter</span> Template for electronic filter design

Prototype filters are electronic filter designs that are used as a template to produce a modified filter design for a particular application. They are an example of a nondimensionalised design from which the desired filter can be scaled or transformed. They are most often seen in regard to electronic filters and especially linear analogue passive filters. However, in principle, the method can be applied to any kind of linear filter or signal processing, including mechanical, acoustic and optical filters.

mm'-type filters, also called double-m-derived filters, are a type of electronic filter designed using the image method. They were patented by Otto Zobel in 1932. Like the m-type filter from which it is derived, the mm'-type filter type was intended to provide an improved impedance match into the filter termination impedances and originally arose in connection with telephone frequency division multiplexing. The filter has a similar transfer function to the m-type, having the same advantage of rapid cut-off, but the input impedance remains much more nearly constant if suitable parameters are chosen. In fact, the cut-off performance is better for the mm'-type if like-for-like impedance matching are compared rather than like-for-like transfer function. It also has the same drawback of a rising response in the stopband as the m-type. However, its main disadvantage is its much increased complexity which is the chief reason its use never became widespread. It was only ever intended to be used as the end sections of composite filters, the rest of the filter being made up of other sections such as k-type and m-type sections.

General m<sub>n</sub>-type image filter

These filters are electrical wave filters designed using the image method. They are an invention of Otto Zobel at AT&T Corp. They are a generalisation of the m-type filter in that a transform is applied that modifies the transfer function while keeping the image impedance unchanged. For filters that have only one stopband there is no distinction with the m-type filter. However, for a filter that has multiple stopbands, there is the possibility that the form of the transfer function in each stopband can be different. For instance, it may be required to filter one band with the sharpest possible cut-off, but in another to minimise phase distortion while still achieving some attenuation. If the form is identical at each transition from passband to stopband the filter will be the same as an m-type filter. If they are different, then the general case described here pertains.

In signal processing, network synthesis filters are filters designed by the network synthesis method. The method has produced several important classes of filter including the Butterworth filter, the Chebyshev filter and the Elliptic filter. It was originally intended to be applied to the design of passive linear analogue filters but its results can also be applied to implementations in active filters and digital filters. The essence of the method is to obtain the component values of the filter from a given rational function representing the desired transfer function.

Analogue filters are a basic building block of signal processing much used in electronics. Amongst their many applications are the separation of an audio signal before application to bass, mid-range, and tweeter loudspeakers; the combining and later separation of multiple telephone conversations onto a single channel; the selection of a chosen radio station in a radio receiver and rejection of others.

In signal processing, a filter is a device or process that removes some unwanted components or features from a signal. Filtering is a class of signal processing, the defining feature of filters being the complete or partial suppression of some aspect of the signal. Most often, this means removing some frequencies or frequency bands. However, filters do not exclusively act in the frequency domain; especially in the field of image processing many other targets for filtering exist. Correlations can be removed for certain frequency components and not for others without having to act in the frequency domain. Filters are widely used in electronics and telecommunication, in radio, television, audio recording, radar, control systems, music synthesis, image processing, computer graphics, and structural dynamics.

<span class="mw-page-title-main">Distributed-element filter</span> Type of electronic filter circuit

A distributed-element filter is an electronic filter in which capacitance, inductance, and resistance are not localised in discrete capacitors, inductors, and resistors as they are in conventional filters. Its purpose is to allow a range of signal frequencies to pass, but to block others. Conventional filters are constructed from inductors and capacitors, and the circuits so built are described by the lumped element model, which considers each element to be "lumped together" at one place. That model is conceptually simple, but it becomes increasingly unreliable as the frequency of the signal increases, or equivalently as the wavelength decreases. The distributed-element model applies at all frequencies, and is used in transmission-line theory; many distributed-element components are made of short lengths of transmission line. In the distributed view of circuits, the elements are distributed along the length of conductors and are inextricably mixed together. The filter design is usually concerned only with inductance and capacitance, but because of this mixing of elements they cannot be treated as separate "lumped" capacitors and inductors. There is no precise frequency above which distributed element filters must be used but they are especially associated with the microwave band.

<span class="mw-page-title-main">Waveguide filter</span> Electronic filter that is constructed with waveguide technology

A waveguide filter is an electronic filter constructed with waveguide technology. Waveguides are hollow metal conduits inside which an electromagnetic wave may be transmitted. Filters are devices used to allow signals at some frequencies to pass, while others are rejected. Filters are a basic component of electronic engineering designs and have numerous applications. These include selection of signals and limitation of noise. Waveguide filters are most useful in the microwave band of frequencies, where they are a convenient size and have low loss. Examples of microwave filter use are found in satellite communications, telephone networks, and television broadcasting.

<span class="mw-page-title-main">Mechanical filter</span> Type of signal processing filter

A mechanical filter is a signal processing filter usually used in place of an electronic filter at radio frequencies. Its purpose is the same as that of a normal electronic filter: to pass a range of signal frequencies, but to block others. The filter acts on mechanical vibrations which are the analogue of the electrical signal. At the input and output of the filter, transducers convert the electrical signal into, and then back from, these mechanical vibrations.

Achieser–Zolotarev filter, or just Zolotarev filter is a class of signal processing filter based on Zolotarev polynomials. Achieser is spelled as "Akhiezer" in some sources. The filter response is similar to the Chebychev filter except that the first ripple is larger than the rest. The filter is especially useful in some waveguide applications.

<span class="mw-page-title-main">Port (circuit theory)</span> Point of entry and exit of electrical energy to/from a circuit

In electrical circuit theory, a port is a pair of terminals connecting an electrical network or circuit to an external circuit, as a point of entry or exit for electrical energy. A port consists of two nodes (terminals) connected to an outside circuit which meets the port condition – the currents flowing into the two nodes must be equal and opposite.

<span class="mw-page-title-main">Distributed-element circuit</span> Electrical circuits composed of lengths of transmission lines or other distributed components

Distributed-element circuits are electrical circuits composed of lengths of transmission lines or other distributed components. These circuits perform the same functions as conventional circuits composed of passive components, such as capacitors, inductors, and transformers. They are used mostly at microwave frequencies, where conventional components are difficult to implement.

References

  1. Young, p.10
  2. Matthaei et al., p.390
  3. Levy, pp.526, 527
    Manuilov and Kobrin, 2005, p.93
    Manuilov et al., 2009, p.526
    Matthaei et al., p.390
  4. Bingham, p.29
  5. Matthaei et al., p.393
  6. Matthaei et al., pp.390–391
  7. Matthaei et al., pp.391–392
  8. Matthaei et al., pp.392–393
  9. Gerke and Kimmel, pp.7–8
    Levy, p.526
    Mendenhall, pp.805–806
  10. Manuilov and Kobrin, 2005, p.93
    Manuilov et al., 2009, p.526
  11. Mehdizadeh, pp.329–331
    Metaxas and Meredith, pp.301–303
  12. Matthaei et al., pp.392, 938
  13. Cohn, pp.651–656
    Marcuvitz, pp.336–350
    Matthaei et al., p.392
  14. Levy, p.526
    Matthaei et al., pp.397–408
  15. Matthaei et al., pp.393, 404–408
  16. Levy, p.1
  17. Levy, pp.528–530
  18. Van Riemen, p.36
  19. Arndt et al., p.186
    Manuilov and Kobrin, 2005, pp.93–94
    Manuilov et al., 2009, pp.527–528
  20. Matthaei et al., pp.951–952
  21. Matthaei et al., pp.938–941
    Sharp, p.111
  22. Levy p.530
  23. Matthaei et al., pp.393, 408–409, 938–947
  24. Avetisyan et al., p.327
  25. Bingham, pp.10–31
  26. Bingham pp.5–6, 17–18
    Avetisyan et al., p.331

Bibliography