Wave disk engine

Last updated

A wave disk engine or wave disk generator is a type of pistonless rotary engine being developed at Michigan State University and Warsaw Institute of Technology. The engine has a spinning disk with curved blades. Once fuel and air enter the engine, the rotation of the disk creates shockwaves that compress the mixture. When ignited, the burning mixture expands, pushing against the blades, causing them to spin. The spinning of the disk itself opens and closes intake and exhaust ports. [1] The proposed concept was called a radial internal combustion wave rotor.

Contents

Background

Wave rotors utilize shock waves to transfer energy between a high-energy fluid to a low-energy fluid, thereby increasing both temperature and pressure of the low-energy fluid (also called pressure wave machines or pressure exchangers).

Operational principles

As with all heat engines, the efficiency of a wave disk engine is governed by the temperature difference between the hot and cold sides (see Carnot's theorem). Compared to a conventional piston engine (reciprocating engine), a wave disk engine works at higher peak temperature, which theoretically makes it more efficient. The design also works without a cooling system, saving weight. Compared to turbine based systems, the rotational speed and the rotor-blade temperature of the wave disk engine is lower, which creates lower stress on materials, and consequently less demanding requirements for materials, leading to cheaper manufacturing and maintenance costs. [2]

Earlier wave rotor implementations were mainly axial flow, where the scavenging process of returning hot compressed air back into the turbine is complex. The wave-disc engine uses a radial and circumferential flow, using centrifugal forces for scavenging. Curved channels provide greater length for the same disc diameter compared to straight channels, allowing the travel times of the waves to be tuned properly.

Current status

The wave-disk engine has the potential for better energy efficiency compared to conventional internal combustion engine designs and can potentially save weight. Possible applications include charging batteries in hybrid vehicles, which could reduce weight by about 1,000 pounds (450 kg). [3] [1] [ citation needed ] It promises to be up to 60% efficient, 30% lighter, and 30% cheaper to manufacture than an equivalent conventional piston engine, and to reduce emissions by 90%. [4]

Michigan State University and Warsaw Institute of Technology researchers claim to have a prototype wave-disk engine and electricity generator that could replace current backup generator technology of plug-in electric hybrid vehicles. [5] The research team is led by Associate Professor of Mechanical Engineering Norbert Müller and has been given $2.5 million funding from the United States Department of Energy's ARPA-E program. Müller's team hoped to have a vehicle-sized 25 kilowatt (33 hp) wave disc engine/generator ready by the end of 2011. [6] [7] As of January 2013, the project is looking into commercialization of the technology. [8] Research continues at Columbia University in 2017 [9] and at Michigan State University . [10]

See also

Related Research Articles

<span class="mw-page-title-main">Engine</span> Machine that converts one or more forms of energy into mechanical energy (of motion)

An engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.

<span class="mw-page-title-main">Steam engine</span> Engine that uses steam to perform mechanical work

A steam engine is a heat engine that performs mechanical work using steam as its working fluid. The steam engine uses the force produced by steam pressure to push a piston back and forth inside a cylinder. This pushing force can be transformed, by a connecting rod and crank, into rotational force for work. The term "steam engine" is most commonly applied to reciprocating engines as just described, although some authorities have also referred to the steam turbine and devices such as Hero's aeolipile as "steam engines". The essential feature of steam engines is that they are external combustion engines, where the working fluid is separated from the combustion products. The ideal thermodynamic cycle used to analyze this process is called the Rankine cycle. In general usage, the term steam engine can refer to either complete steam plants, such as railway steam locomotives and portable engines, or may refer to the piston or turbine machinery alone, as in the beam engine and stationary steam engine.

<span class="mw-page-title-main">Turbine</span> Rotary mechanical device that extracts energy from a fluid flow

A turbine is a rotary mechanical device that extracts energy from a fluid flow and converts it into useful work. The work produced can be used for generating electrical power when combined with a generator. A turbine is a turbomachine with at least one moving part called a rotor assembly, which is a shaft or drum with blades attached. Moving fluid acts on the blades so that they move and impart rotational energy to the rotor. Early turbine examples are windmills and waterwheels.

<span class="mw-page-title-main">Tesla turbine</span> Bladeless centripetal flow turbine

The Tesla turbine is a bladeless centripetal flow turbine invented by Nikola Tesla in 1913. It functions as nozzles apply a moving fluid to the edges of a set of discs. The engine uses smooth discs rotating in a chamber to generate rotational movement due to the momentum exchange between the fluid and the discs. The discs are arranged in an orientation similar to a stack of CDs on an axle.

<span class="mw-page-title-main">Turbopump</span> Pump driven by a gas turbine

A turbopump is a propellant pump with two main components: a rotodynamic pump and a driving gas turbine, usually both mounted on the same shaft, or sometimes geared together. They were initially developed in Germany in the early 1940s. The purpose of a turbopump is to produce a high-pressure fluid for feeding a combustion chamber or other use. While other use cases exist, they are most commonly found in liquid rocket engines.

<span class="mw-page-title-main">Gas turbine</span> Type of internal and continuous combustion engine

A gas turbine, gas turbine engine, or also known by its old name internal combustion turbine, is a type of continuous flow internal combustion engine. The main parts common to all gas turbine engines form the power-producing part and are, in the direction of flow:

<span class="mw-page-title-main">Electric generator</span> Device that converts other energy to electrical energy

In electricity generation, a generator is a device that converts motion-based power or fuel-based power into electric power for use in an external circuit. Sources of mechanical energy include steam turbines, gas turbines, water turbines, internal combustion engines, wind turbines and even hand cranks. The first electromagnetic generator, the Faraday disk, was invented in 1831 by British scientist Michael Faraday. Generators provide nearly all the power for electrical grids.

Hybrid Synergy Drive (HSD), also known as Toyota Hybrid System II, is the brand name of Toyota Motor Corporation for the hybrid car drive train technology used in vehicles with the Toyota and Lexus marques. First introduced on the Prius, the technology is an option on several other Toyota and Lexus vehicles and has been adapted for the electric drive system of the hydrogen-powered Mirai, and for a plug-in hybrid version of the Prius. Previously, Toyota also licensed its HSD technology to Nissan for use in its Nissan Altima Hybrid. Its parts supplier Aisin offers similar hybrid transmissions to other car companies.

A microturbine (MT) is a small gas turbine with similar cycles and components to a heavy gas turbine. The MT power-to-weight ratio is better than a heavy gas turbine because the reduction of turbine diameters causes an increase in shaft rotational speed. Heavy gas turbine generators are too large and too expensive for distributed power applications, so MTs are developed for small-scale power like electrical power generation alone or as combined cooling, heating, and power (CCHP) systems. The MT are 25 to 500 kW (34 to 671 hp) gas turbines evolved from piston engine turbochargers, aircraft auxiliary power units (APU) or small jet engines, the size of a refrigerator. Early turbines of 30–70 kW (40–94 hp) grew to 200–250 kW (270–340 hp).

<span class="mw-page-title-main">Turbomachinery</span> Machine for exchanging energy with a fluid

Turbomachinery, in mechanical engineering, describes machines that transfer energy between a rotor and a fluid, including both turbines and compressors. While a turbine transfers energy from a fluid to a rotor, a compressor transfers energy from a rotor to a fluid. It is an important application of fluid mechanics.

A swing-piston engine is a type of internal combustion engine in which the pistons move in a circular motion inside a ring-shaped "cylinder", moving closer and further from each other to provide compression and expansion. Generally two sets of pistons are used, geared to move in a fixed relationship as they rotate around the cylinder. In some versions the pistons oscillate around a fixed center, as opposed to rotating around the entire engine. The design has also been referred to as a oscillating piston engine, vibratory engine when the pistons oscillate instead of rotate, or toroidal engine based on the shape of the "cylinder".

<span class="mw-page-title-main">Timeline of heat engine technology</span>

This timeline of heat engine technology describes how heat engines have been known since antiquity but have been made into increasingly useful devices since the 17th century as a better understanding of the processes involved was gained. A heat engine is any system that converts heat to mechanical energy, which can then be used to do mechanical work.They continue to be developed today.

<span class="mw-page-title-main">Betz's law</span> Aerodynamic power limitation for wind turbines

In aerodynamics, Betz's law indicates the maximum power that can be extracted from the wind, independent of the design of a wind turbine in open flow. It was published in 1919 by the German physicist Albert Betz. The law is derived from the principles of conservation of mass and momentum of the air stream flowing through an idealized "actuator disk" that extracts energy from the wind stream. According to Betz's law, no wind turbine of any mechanism can capture more than 16/27 (59.3%) of the kinetic energy in wind. The factor 16/27 (0.593) is known as Betz's coefficient. Practical utility-scale wind turbines achieve at peak 75–80% of the Betz limit.

<span class="mw-page-title-main">Radial turbine</span> Type of turbine

A radial turbine is a turbine in which the flow of the working fluid is radial to the shaft. The difference between axial and radial turbines consists in the way the fluid flows through the components. Whereas for an axial turbine the rotor is 'impacted' by the fluid flow, for a radial turbine, the flow is smoothly orientated perpendicular to the rotation axis, and it drives the turbine in the same way water drives a watermill. The result is less mechanical stress which enables a radial turbine to be simpler, more robust, and more efficient when compared to axial turbines. When it comes to high power ranges the radial turbine is no longer competitive and the efficiency becomes similar to that of the axial turbines.

<span class="mw-page-title-main">Components of jet engines</span> Brief description of components needed for jet engines

This article briefly describes the components and systems found in jet engines.

A liquid nitrogen engine is powered by liquid nitrogen, which is stored in a tank. Traditional nitrogen engine designs work by heating the liquid nitrogen in a heat exchanger, extracting heat from the ambient air and using the resulting pressurized gas to operate a piston or rotary motor. Vehicles propelled by liquid nitrogen have been demonstrated, but are not used commercially. One such vehicle, Liquid Air, was demonstrated in 1902.

The exoskeletal engine (ESE) is a concept in turbomachinery design. Current gas turbine engines have central rotating shafts and fan-discs and are constructed mostly from heavy metals. They require lubricated bearings and need extensive cooling for hot components. They are also subject to severe imbalance that could wipe out the whole rotor stage, are prone to high- and low-cycle fatigue, and subject to catastrophic failure due to disc bursts from high tensile loads, consequently requiring heavy containment devices. To address these limitations, the ESE concept turns the conventional configuration inside-out and utilizes a drum-type rotor design for the turbomachinery in which the rotor blades are attached to the inside of a rotating drum instead of radially outwards from a shaft and discs. Multiple drum rotors could be used in a multi-spool design.

An airbreathing jet engine is a jet engine in which the exhaust gas which supplies jet propulsion is atmospheric air, which is taken in, compressed, heated, and expanded back to atmospheric pressure through a propelling nozzle. Compression may be provided by a gas turbine, as in the original turbojet and newer turbofan, or arise solely from the ram pressure of the vehicle's velocity, as with the ramjet and pulsejet.

<span class="mw-page-title-main">Exhaust heat recovery system</span>

An exhaust heat recovery system turns waste heat energy in exhaust gases into electric energy for batteries or mechanical energy reintroduced on the crankshaft. The technology is of increasing interest as car and heavy-duty vehicle manufacturers continue to increase efficiency, saving fuel and reducing emissions.

<span class="mw-page-title-main">Internal combustion engine</span> Engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber

An internal combustion engine is a heat engine in which the combustion of a fuel occurs with an oxidizer in a combustion chamber that is an integral part of the working fluid flow circuit. In an internal combustion engine, the expansion of the high-temperature and high-pressure gases produced by combustion applies direct force to some component of the engine. The force is typically applied to pistons, turbine blades, a rotor, or a nozzle. This force moves the component over a distance, transforming chemical energy into kinetic energy which is used to propel, move or power whatever the engine is attached to.

References

  1. 1 2 Shock wave puts hybrid engines in a spin, Helen Knight, New Scientist, 15 March 2011, Accessed March 2011
  2. "Radial-flow wave rotro concepts, unconventional designs and applications" (PDF). egr.msu.edu. 2004-11-13. Retrieved 2011-03-20.
  3. Shockwave-Generating Wave Discs Could Replace Internal Combustion Engines Popular Science Magazine, 03.16.2011, Accessed March 2011
  4. "Wave Disk Engine". DOE ARPA-E. Retrieved 2011-04-25.
  5. "Wave disk engines to make hybrid vehicles cheaper, more efficient". ZDnet.com. 2009-11-01. Archived from the original on January 4, 2011. Retrieved 2011-03-20.
  6. "Michigan State University Receives $2.5M ARPA-E Award to Build Wave Disc Engine/Generator for Series Hybrid Applications". greencarcongress.com. 2009-10-31. Retrieved 2011-03-20.
  7. "New engine sends shock waves through auto industry". NBC News. 2011-04-06. Retrieved 2011-04-09.
  8. "ARPA-E Awardees Selected for NSF Innovation Corps Program". 2013-01-22. Archived from the original on October 10, 2013.
  9. Akbari, Pejman - Agoos, Ian (2017-09-19). "Two-Stage Wave Disk Engine Concept and Performance Prediction". SAE Technical Paper Series. Vol. 1. SAE International. doi:10.4271/2017-01-2046 via DO - 10.4271/2017-01-2046.{{cite book}}: CS1 maint: multiple names: authors list (link)
  10. P. Parraga-Ramirez,1 M. Varney,2 E. Tarkleson,3 N. Müller. "Development of a Wave Disk Engine Experimental Facility".{{cite journal}}: Cite journal requires |journal= (help)CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)