Winfrenatia

Last updated

Winfrenatia
Winfrenatia reticulata reconstruccion.jpg
Reconstruction of the transverse view of Winfrenatia
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Fungi
Genus: Winfrenatia
T.N.Taylor, Hass & Kerp (1997)
Species:
W. reticulata
Binomial name
Winfrenatia reticulata
T.N.Taylor, Hass & Kerp (1997)

Winfrenatia is a genus that contains the oldest-known terrestrial lichen, [1] occurring in fossils preserved in the lower Devonian Rhynie chert. The genus contains the single species Winfrenatia reticulata, named for the texture of its surface. Both the species and the genus were described in 1997. [2]

It comprises a thallus, made of layered, aseptate hyphae, with a number of depressions on its top surface. Each depression contains a net of hyphae holding a sheathed cyanobacterium. The fungus appears to be related to the Zygomycetes, and the photosynthetic partner of photobiont resembles the coccoid cyanobacteria Gloeocapsa and Chroococcidiopsis . [1] [2] [3] There may be two separate algae, making the lichen a symbiosis of three organisms. [3]

Related Research Articles

<span class="mw-page-title-main">Lycophyte</span> Broadly circumscribed group of spore bearing plants

The lycophytes, when broadly circumscribed, are a group of vascular plants that include the clubmosses. They are sometimes placed in a division Lycopodiophyta or Lycophyta or in a subdivision Lycopodiophytina. They are one of the oldest lineages of extant (living) vascular plants; the group contains extinct plants that have been dated from the Silurian. Lycophytes were some of the dominating plant species of the Carboniferous period, and included the tree-like Lepidodendrales, some of which grew over 40 metres (130 ft) in height, although extant lycophytes are relatively small plants.

<span class="mw-page-title-main">Lichen</span> Symbiosis of fungi with algae or cyanobacteria

A lichen is a composite organism that arises from algae or cyanobacteria living among filaments of multiple fungi species in a mutualistic relationship. Lichens are important actors in nutrient cycling and act as producers which many higher trophic feeders feed on, such as reindeer, gastropods, nematodes, mites, and springtails. Lichens have properties different from those of their component organisms. They come in many colors, sizes, and forms and are sometimes plant-like, but are not plants. They may have tiny, leafless branches (fruticose); flat leaf-like structures (foliose); grow crust-like, adhering tightly to a surface (substrate) like a thick coat of paint (crustose); have a powder-like appearance (leprose); or other growth forms.

<span class="mw-page-title-main">Book lung</span> Type of lung commonly found in arachnids

A book lung is a type of respiration organ used for atmospheric gas exchange that is present in many arachnids, such as scorpions and spiders. Each of these organs is located inside an open ventral abdominal, air-filled cavity (atrium) and connects with its surroundings through a small opening for the purpose of respiration.

<span class="mw-page-title-main">Paleobotany</span> Study of organic evolution of plants based on fossils

Paleobotany, also spelled as palaeobotany, is the branch of botany dealing with the recovery and identification of plant remains from geological contexts, and their use for the biological reconstruction of past environments (paleogeography), and the evolutionary history of plants, with a bearing upon the evolution of life in general. A synonym is paleophytology. It is a component of paleontology and paleobiology. The prefix palaeo- or paleo- means "ancient, old", and is derived from the Greek adjective παλαιός, palaios. Paleobotany includes the study of terrestrial plant fossils, as well as the study of prehistoric marine photoautotrophs, such as photosynthetic algae, seaweeds or kelp. A closely related field is palynology, which is the study of fossilized and extant spores and pollen.

<span class="mw-page-title-main">Pezizomycotina</span> Subdivision of fungi

Pezizomycotina make up most of the Ascomycota fungi and include most lichenized fungi too. Pezizomycotina contains the filamentous ascomycetes and is a subdivision of the Ascomycota. It is more or less synonymous with the older taxon Euascomycota. These fungi reproduce by fission rather than budding and this subdivision includes almost all the ascus fungi that have fruiting bodies visible to the naked eye.

<span class="mw-page-title-main">Rhynie chert</span> Early Devonian sedimentary deposit exhibiting extraordinary fossil detail or completeness

<i>Asteroxylon</i> Extinct genus of spore-bearing plants

Asteroxylon is an extinct genus of vascular plants of the Division Lycopodiophyta known from anatomically preserved specimens described from the famous Early Devonian Rhynie chert and Windyfield chert in Aberdeenshire, Scotland. Asteroxylon is considered a basal member of the Lycopsida.

<i>Rhyniognatha</i> Extinct genus of insects

Rhyniognatha is an extinct genus of arthropod of disputed placement. It has been considered in some analyses as the oldest insect known, as well as possibly being a flying insect. Rhyniognatha is known from a partial head with preserved mouthparts from the Early Devonian aged Rhynie chert around 400 million years ago, when Earth’s first terrestrial ecosystems were being formed. The type, and only species is R. hirsti, which was named and described in 1928. Other analyses have interpreted the specimen as a myriapod.

<span class="mw-page-title-main">Nematophyta</span> Phylum of land organisms

The Nematophyta or nematophytes are a paraphyletic group of land organisms, probably including some plants as well as algae known only from the fossil record, from the Silurian period until the early Devonian Rhynie chert. The type genus Nematothallus, which typifies the group, was first described by Lang in 1937, who envisioned it being a thallose plant with tubular features and sporophytes, covered by a cuticle which preserved impressions of the underlying cells. He had found abundant disaggregated remains of all three features, none of which were connected to another, leaving his reconstruction of the phytodebris as parts of a single organism highly conjectural. No reproductive or vegetative structures common to the land plants are known, and certain members of the nematophyte plexus seem to belong to the fungi.

Rhyniella is a genus of fossil springtails (Collembola) from the Rhynie chert, which formed during the Pragian stage of the Early Devonian. One species has been described, Rhyniella praecursor. For some time it was believed to be the only hexapod from the Early Devonian

<span class="mw-page-title-main">Polysporangiophyte</span> Spore-bearing plants with branched sporophytes

Polysporangiophytes, also called polysporangiates or formally Polysporangiophyta, are plants in which the spore-bearing generation (sporophyte) has branching stems (axes) that bear sporangia. The name literally means 'many sporangia plant'. The clade includes all land plants (embryophytes) except for the bryophytes whose sporophytes are normally unbranched, even if a few exceptional cases occur. While the definition is independent of the presence of vascular tissue, all living polysporangiophytes also have vascular tissue, i.e., are vascular plants or tracheophytes. Extinct polysporangiophytes are known that have no vascular tissue and so are not tracheophytes.

<i>Aglaophyton</i> Extinct (Devonian) prevascular land plant

Aglaophyton major was the sporophyte generation of a diplohaplontic, pre-vascular, axial, free-sporing land plant of the Lower Devonian. It had anatomical features intermediate between those of the bryophytes and vascular plants or tracheophytes.

<i>Rhynia</i> Extinct species of vascular plant

Rhynia is a single-species genus of Devonian vascular plants. Rhynia gwynne-vaughanii was the sporophyte generation of a vascular, axial, free-sporing diplohaplontic embryophytic land plant of the Early Devonian that had anatomical features more advanced than those of the bryophytes. Rhynia gwynne-vaughanii was a member of a sister group to all other eutracheophytes, including modern vascular plants.

<i>Horneophyton</i> Extinct genus of early plants

Horneophyton is an extinct early plant which may form a "missing link" between the hornworts and the Rhyniopsida. It is a member of the class Horneophytopsida. Horneophyton is among the most abundant fossil organisms found in the Rhynie chert, a Devonian Lagerstätte in Aberdeenshire, UK. A single species, Horneophyton lignieri, is known. Its probable female gametophyte is the form taxon Langiophyton mackiei.

<span class="mw-page-title-main">Evolution of fungi</span> Origin and diversification of fungi through geologic time

Fungi diverged from other life around 1.5 billion years ago, with the glomaleans branching from the "higher fungi" (dikaryans) at ~570 million years ago, according to DNA analysis. Fungi probably colonized the land during the Cambrian, over 500 million years ago,, and possibly 635 million years ago during the Ediacaran, but terrestrial fossils only become uncontroversial and common during the Devonian, 400 million years ago.

<i>Nothia aphylla</i> Extinct species of spore-bearing plant

Nothia was a genus of Early Devonian vascular plants whose fossils were found in the Rhynie chert in Scotland. It had branching horizontal underground stems (rhizomes) and leafless aerial stems (axes) bearing lateral and terminal spore-forming organs (sporangia). Its aerial stems were covered with small 'bumps' (emergences), each bearing a stoma. It is one of the best described early land plants. Its classification remains uncertain, although it has been treated as a zosterophyll. There is one species, Nothia aphylla.

<i>Ventarura</i> Extinct genus of spore-bearing plants

Ventarura is a genus of extinct vascular plants of the Early Devonian. Fossils were found in the Windyfield chert, Rhynie, Scotland. Some features, such as bivalved sporangia borne laterally and the anatomy of the xylem, relate this genus to the zosterophylls. Other features are unclear due to poor preservation.

Palaeonema an extinct genus of nematodes from the Early Devonian. It contains only one species, Palaeonema phyticum, and is the only member of the family Palaeonematidae. P. phyticum is the oldest known fossil nematode, and was parasitic upon the Rhynie chert plant Agalophyton.

Paleopyrenomycites is a Devonian genus of fungus of uncertain phylogenetic affinity within the Pezizomycotina total group, known from the Rhynie chert.

Tortotubus is an early terrestrial fungus. Its growth trajectory can be ascertained from its fossils, which occur across the globe from the Ordovician to the Devonian. These fossils document foraging activities of slender, cell-wide exploratory hyphae; when these hit a source of food, they produced secondary branches that grew back down the original filament, covered themselves with an envelope, and served as pipes to shuttle nutrients to other parts of the organism. Today, mycelium with this growth pattern is observed in the mushroom-forming fungi.

References

  1. 1 2 Taylor, T.N.; Hass, H.; Remy, W.; Kerp, H. (1995). "The oldest fossil lichen". Nature. 378 (6554): 244. Bibcode:1995Natur.378..244T. doi: 10.1038/378244a0 . S2CID   4353572.
  2. 1 2 Taylor, T.N.; Hass, H.; Kerp, H. (1997). "A cyanolichen from the lower Devonian Rhynie chert". American Journal of Botany. 84 (7): 992–1004. doi:10.2307/2446290. ISSN   0002-9122. JSTOR   2446290. PMID   21708654.
  3. 1 2 Karatygin, I.V.; Snigirevskaya, N.S.; Vikulin, S.V. (2009). "The most ancient terrestrial lichen Winfrenatia reticulata: A new find and new interpretation". Paleontological Journal. 43: 107–114. doi:10.1134/S0031030109010110. S2CID   85262818.