XS-1 (spacecraft)

Last updated

The DARPA XS-1 was an experimental spaceplane/booster with the planned capability to deliver small satellites into orbit for the U.S. Military. [1] It was reported to be designed to be reusable as frequently as once a day, with a stated goal of doing so for 10 days straight. [2] The XS-1 was intended to directly replace the first stage of a multistage rocket by taking off vertically and flying to hypersonic speed and high suborbital altitude, enabling one or more expendable upper stages to separate and deploy a payload into low Earth orbit. The XS-1 would then return to Earth, where it could ostensibly be serviced fast enough to repeat the process at least once every 24 hours. [3] [4]

Contents

The DARPA XS-1 program operated 2013–2020. [5] After several years of refinement and proposals, in May 2017, the Defense Advanced Research Projects Agency (DARPA) [6] selected Boeing for Phase 2/3 to build and test an XS-1 spacecraft (now called the Experimental Spaceplane program). [7] At the time, test flights were scheduled to start no earlier than 2020. [7] On 22 January 2020, it was announced that Boeing was ceasing its role in the program, effectively ending it. [8]

History

DARPA created the XS-1 program (later renamed to the Experimental Spaceplane Program), with the intent to increase national security by inventing a new, inexpensive, short-notice form of hypersonic aircraft. They promoted concepts such as reaching a Low Earth orbit within days, unmanned reusable rockets, external boosters being replaced by internal, self-contained cryogenic propelled boosters, the ability to deploy 900 to 3,000 lb (410 to 1,400 kg) payloads into polar orbit, composite-metallic wings that could withstand suborbital hypersonic flight and temperatures exceeding 3,000 °F (1,600 °C), autonomous flight technology developed by DARPA's Airborne Launch Assist Space Access (ALASA) program, and reaching Mach 10. [9]

The XS-1 program followed several previous failed attempts to develop a reusable space launch vehicle. The Rockwell X-30 in the 1980s and X-33 VentureStar in the 1990s never flew because of immature technologies. DARPA's last attempt was the Responsive Access, Small Cargo, Affordable Launch [10] [11] (RASCAL) program in the early 2000s with the goal of placing 300 lb (140 kg) payloads in orbit for less than $750,000.

The XS-1 program was announced in November 2013 at a DARPA industry day. DARPA stated that the XS-1 was more feasible due to better technologies, including light and low-cost composite airframe and tank structures, durable thermal protection, reusable and affordable propulsion, and aircraft-like health management systems. [5] Jess Sponable, the XS-1 program manager, spoke on February 5, 2014, at NASA's Future In-Space Operations group, stating, "The vision here is to break the cycle of escalating space system costs, enable routine space access and hypersonic vehicles." [12]

By July 2014, three companies were awarded contracts to design a demonstration vehicle. The selected companies were Boeing with Blue Origin, Masten Space Systems with XCOR Aerospace, and Northrop Grumman with Virgin Galactic. Unlike other DARPA programs that were handed off to parts of the United States military once proven successful, this initiative was designed from the start to be a direct partnership between the agency and industry. In August 2015, Boeing, Northrop Grumman, and Masten Space Systems all received additional funding from DARPA to continue their design concepts for Phase 1B of the program. As of 2015, the first XS-1 orbital mission was planned to occur as early as 2020. [13]

DARPA began Phase 2 of the XS-1 program in April 2016. [14] In July 2016, DARPA stated that they believed "the time is right for a renewed effort, one that began in 2013/14, but [in 2016 was] ramped up through a solicitation process, allowing for several industry concepts to be created. Per the [solicitation] requirements, the winged craft [requirements would continue to need to] be capable of performing 10 flights in 10 days, with a payload capacity greater than 3,000 lbs for a cost of less than $5 million USD per flight." [15]

In May 2017, DARPA selected Boeing for Phase 2/3 to build and test the XS-1 (now called the Experimental Spaceplane program). [7] The phase 2/3 contract included $146 million in DARPA funding and an unspecified contribution by the company. [16]

On 22 January 2020, DARPA announced that Boeing was pulling out of the XS-1 program "immediately" and effectively ending the program. [8] [16]

Program goals

The goals of the program as of September 2013 were: [3] [17] The space plane must carry a 3,000–5,000 lb (1,400–2,300 kg) payload to low Earth orbit for less than a cost of US$5 million per flight, [4] at a rate of 10 or more flights per year; at that time, launching that type of payload requires using an Orbital Sciences Corporation Minotaur IV expendable booster, priced at $55 million once per year.

Entrants and selection

Boeing, Northrop Grumman Aerospace Systems, and Masten Space Systems have Phase 1 conceptual design contracts.

Boeing performed trade studies with Blue Origin initially. Boeing's design would allow the autonomous booster to carry the second stage and payload to high altitude and deploy them into space. The booster would then return to Earth, where it could be quickly prepared for the next flight by applying operation and maintenance principles similar to modern aircraft. [20]

Northrop Grumman used its aircraft, spacecraft, and autonomous systems experience to work with its team consisting of Scaled Composites to lead fabrication and assembly, and Virgin Galactic to head commercial spaceplane operations and transition; Virgin Galactic and Scaled Composites both worked on the SpaceShip Two, the world's only commercial spaceline. The team also leveraged technologies developed during related projects for DARPA, NASA, and the U.S. Air Force Research Laboratory to give the government "return on those investments." Their concept included a clean-pad launch[ clarification needed ] using a transporter erector launcher with minimal infrastructure and ground crews, highly autonomous flight operations, and horizontal landing and recovery on standard runways. [18]

Masten Space Systems has experience in rapid reusable rocket-powered vehicles, with their Xombie, Xoie, and Xaero vertical takeoff, vertical landing (VTVL) designs having already met or exceeded the 10 flights in 10 days objective set by the program. Although the company consists of approximately 30 employees and is headquartered in a small building at the Mojave Air and Space Port, they have spent years flying various small VTVL systems on short hops at the spaceport, serving as test beds for guidance, navigation, and control (GNC) systems designed to safely land spacecraft on the Moon and potentially other planets. Their concept showed a VTVL system taking off vertically from a launch pad with wings and a tail fin. Masten Space Systems was partnered with XCOR Aerospace for Phase 1A. [21]

Phase 2 & 3

In May 2017 Boeing was selected to partner with DARPA to build the XS-1. [22] Aerojet Rocketdyne was to provide AR-22 engines, derived from the RS-25 engine, for the spacecraft. [23] The phase 2/3 contract to build and fly the prototype included US$146 million of DARPA funding. [16] [ clarification needed ]

Boeing XS-1 Phantom Express

A rendering of Boeing's XS-1 Phantom Express launch vehicle on LC-48 LC-48 EIS Image--019.jpg
A rendering of Boeing's XS-1 Phantom Express launch vehicle on LC-48

The Boeing design was a vertical takeoff, horizontal landing (VTHL) craft [7] called Phantom Express, intended to increase the nation's access to space. [24] The planned specifications include a vehicle height of 100 feet (30 m), with a 62 foot (19 m) wingspan. The Phantom express was to use an Aerojet Rocketdyne AR-22 engine, which was originally built for the Space Shuttle program, but has been modified to be reused ten times within ten days, for less than $5 million per launch. It was intended to loft satellites cheaply and rapidly, with reusability further lowering the cost per launch. This performance requirement was demonstrated on a test stand in July 2018. [25] On 22 January 2020, it was announced that Boeing's Phantom Works division was ceasing its role in the program. Boeing representatives stated that their investments into the XS-1 project would be redirected to other Boeing projects that relate to air, sea, and space domains. [8] DARPA sought no refunds, as Boeing received payment with accordance to milestones achieved in development. The program was not entirely unfruitful, as the work done proved that the technologies available at the time would be able to support new projects similar to the XS-1 program, and no technical barriers were present. [26]

See also

Related Research Articles

<span class="mw-page-title-main">Reusable launch vehicle</span> Vehicles that can go to space and return

A reusable launch vehicle has parts that can be recovered and reflown, while carrying payloads from the surface to outer space. Rocket stages are the most common launch vehicle parts aimed for reuse. Smaller parts such as rocket engines and boosters can also be reused, though reusable spacecraft may be launched on top of an expendable launch vehicle. Reusable launch vehicles do not need to make these parts for each launch, therefore reducing its launch cost significantly. However, these benefits are diminished by the cost of recovery and refurbishment.

<span class="mw-page-title-main">Spaceplane</span> Spacecraft capable of aerodynamic flight in atmosphere

A spaceplane is a vehicle that can fly and glide like an aircraft in Earth's atmosphere and maneuver like a spacecraft in outer space. To do so, spaceplanes must incorporate features of both aircraft and spacecraft. Orbital spaceplanes tend to be more similar to conventional spacecraft, while sub-orbital spaceplanes tend to be more similar to fixed-wing aircraft. All spaceplanes to date have been rocket-powered for takeoff and climb, but have then landed as unpowered gliders.

<span class="mw-page-title-main">NASA X-43</span> Unmanned US experimental supersonic aircraft, 1991-2000

The NASA X-43 was an experimental unmanned hypersonic aircraft with multiple planned scale variations meant to test various aspects of hypersonic flight. It was part of the X-plane series and specifically of NASA's Hyper-X program developed in the late 1990s. It set several airspeed records for jet aircraft. The X-43 is the fastest jet-powered aircraft on record at approximately Mach 9.6.

<span class="mw-page-title-main">Lockheed Martin X-33</span> Uncrewed re-usable spaceplane technology demonstrator for the VentureStar

The Lockheed Martin X-33 was a proposed uncrewed, sub-scale technology demonstrator suborbital spaceplane that was developed for a period in the 1990s. The X-33 was a technology demonstrator for the VentureStar orbital spaceplane, which was planned to be a next-generation, commercially operated reusable launch vehicle. The X-33 would flight-test a range of technologies that NASA believed it needed for single-stage-to-orbit reusable launch vehicles, such as metallic thermal protection systems, composite cryogenic fuel tanks for liquid hydrogen, the aerospike engine, autonomous (uncrewed) flight control, rapid flight turn-around times through streamlined operations, and its lifting body aerodynamics.

<span class="mw-page-title-main">National Security Space Launch</span> Expendable launch system program of the United States Space Force

National Security Space Launch (NSSL) is a program of the United States Space Force (USSF) intended to assure access to space for United States Department of Defense and other United States government payloads. The program is managed by the Assured Access to Space Directorate (SSC/AA) of the Space Force's Space Systems Command (SSC), in partnership with the National Reconnaissance Office.

<span class="mw-page-title-main">Northrop Grumman Pegasus</span> Air-launched rocket

Pegasus is an air-launched launch vehicle developed by Orbital Sciences Corporation (OSC) and now built and launched by Northrop Grumman. Pegasus is the world's first privately developed orbital launch vehicle. Capable of carrying small payloads of up to 443 kg (977 lb) into low Earth orbit, Pegasus first flew in 1990 and remains active as of 2021. The vehicle consists of three solid propellant stages and an optional monopropellant fourth stage. Pegasus is released from its carrier aircraft at approximately 12,000 m (39,000 ft), and its first stage has a wing and a tail to provide lift and altitude control while in the atmosphere. Notably, the first stage does not have a thrust vector control (TVC) system.

<span class="mw-page-title-main">Boeing X-37</span> Reusable robotic spaceplane

The Boeing X-37, also known as the Orbital Test Vehicle (OTV), is a reusable robotic spacecraft. It is boosted into space by a launch vehicle, then re-enters Earth's atmosphere and lands as a spaceplane. The X-37 is operated by the Department of the Air Force Rapid Capabilities Office, in collaboration with United States Space Force, for orbital spaceflight missions intended to demonstrate reusable space technologies. It is a 120-percent-scaled derivative of the earlier Boeing X-40. The X-37 began as a NASA project in 1999, before being transferred to the United States Department of Defense in 2004. Until 2019, the program was managed by Air Force Space Command.

<span class="mw-page-title-main">Space Shuttle design process</span> Development program of the NASA Space Shuttle

Before the Apollo 11 Moon landing in 1969, NASA began studies of Space Shuttle designs as early as October 1968. The early studies were denoted "Phase A", and in June 1970, "Phase B", which were more detailed and specific. The primary intended use of the Space Shuttle was supporting the future space station, ferrying a minimum crew of four and about 20,000 pounds (9,100 kg) of cargo, and being able to be rapidly turned around for future flights.

<span class="mw-page-title-main">Masten Space Systems</span> Defunct American aerospace company

Masten Space Systems was an aerospace manufacturer startup company in Mojave, California that was developing a line of vertical takeoff, vertical landing (VTVL) rockets, initially for uncrewed research sub-orbital spaceflights and eventually intended to support robotic orbital spaceflight launches.

<span class="mw-page-title-main">DARPA Falcon Project</span> US program to develop a hypersonic weapon

The DARPA FALCON Project was a two-part joint project between the Defense Advanced Research Projects Agency (DARPA) and the United States Air Force (USAF) and is part of Prompt Global Strike. The first part of the project aimed to develop a Small Launch System (SLS) capable of accelerating hypersonic gliding weapons as well as launching small satellites into Earth orbit. The second part of the project aimed to develop Hypersonic Weapon Systems (HWS): a short term high performance hypersonic gliding weapon previously named the X-41 Common Aero Vehicle (CAV) that could be launched from Expendable Launch Vehicles (ELV), Reusable Launch Vehicles (RLVs), Hypersonic Cruise Vehicles (HCV), or Space Maneuvering Vehicles (SMP), and a long term hypersonic cruise aircraft named the Hypersonic Cruise Vehicle (HCV). This two-part program was announced in 2003 and continued into 2006.

Scramjet programs refers to research and testing programs for the development of supersonic combustion ramjets, known as scramjets. This list provides a short overview of national and international collaborations, and civilian and military programs. The USA, Russia, India, and China (2014), have succeeded at developing scramjet technologies.

<span class="mw-page-title-main">VTVL</span> Method of takeoff and landing used by rockets; vertical takeoff, vertical landing

Vertical takeoff, vertical landing (VTVL) is a form of takeoff and landing for rockets. Multiple VTVL craft have flown. The most successful VTVL vehicle was the Apollo Lunar Module which delivered the first humans to the Moon. Building on the decades of development, SpaceX utilised the VTVL concept for its flagship Falcon 9 first stage, which has delivered over two hundred successful powered landings so far.

Avatar is a concept study for a robotic single-stage reusable spaceplane capable of horizontal takeoff and landing, by India's Defence Research and Development Organisation. The mission concept is for low cost military and commercial satellite space launches.

Project 921-3 is a crewed spacecraft sub-system of Project 921. The term 921-3 is often used for the Chinese spaceplane program.

<span class="mw-page-title-main">Hypersonic flight</span> Flight at altitudes lower than 90km and at speeds above Mach 5

Hypersonic flight is flight through the atmosphere below altitudes of about 90 km at speeds greater than Mach 5, a speed where dissociation of air begins to become significant and high heat loads exist. Speeds over Mach 25 have been achieved below the thermosphere as of 2020.

<span class="mw-page-title-main">Air-launch-to-orbit</span> Method of launching rockets at altitude from a conventional horizontal-takeoff aircraft

Air-launch-to-orbit (ALTO) is the method of launching smaller rockets at altitude from a heavier conventional horizontal-takeoff aircraft, to carry satellites to low Earth orbit. It is a follow-on development of air launches of experimental aircraft that began in the late 1940s. This method, when employed for orbital payload insertion, presents significant advantages over conventional vertical rocket launches, particularly because of the reduced mass, thrust, cost of the rocket, geographical factors, and natural disasters.

<span class="mw-page-title-main">Minotaur IV</span> Space launch vehicle

Minotaur IV, also known as Peacekeeper SLV and OSP-2 PK is an active expendable launch system derived from the LGM-118 Peacekeeper ICBM. It is operated by Northrop Grumman Space Systems, and made its maiden flight on 22 April 2010, carrying the HTV-2a Hypersonic Test Vehicle. The first orbital launch occurred on 26 September 2010 with the SBSS satellite for the United States Air Force.

Aircraft can have different ways to take off and land. Conventional airplanes accelerate along the ground until sufficient lift is generated for takeoff, and reverse the process to land. Some airplanes can take off at low speed, this being a short takeoff. Some aircraft such as helicopters and Harrier jump jets can take off and land vertically. Rockets also usually take off vertically, but some designs can land horizontally.

Airborne Launch Assist Space Access, or DARPA ALASA is a canceled program of the US defense technology agency DARPA "designed to produce a rocket capable of launching a 100-pound satellite into low Earth orbit for less than $1 million." The program was conceived, then announced in 2011, and funded development work began in 2012. The project was terminated in late 2015.

The Chinese reusable experimental spacecraft is the first reusable spacecraft produced by China. It embarked upon its initial orbital mission on 4 September 2020. According to media reports, the CSSHQ is launched into Earth orbit in a vertical configuration while enclosed within the payload fairings of a rocket like a traditional satellite or space capsule, but it returns to Earth via a runway landing like a conventional aircraft; the landing is conducted autonomously. In the absence of any official descriptions of the spacecraft or photographic depictions thereof, some observers have speculated that the CSSHQ may resemble the X-37B spaceplane of the United States in both form and function.

References

  1. David Axe (2015-08-03). "Pentagon Preps for Orbital War With New Spaceplane". The Daily Beast. Retrieved 2015-08-03.
  2. "Experimental Spaceplane (XS-1)". DARPA. Archived from the original on 2016-06-16. Retrieved 2016-06-20.
  3. 1 2 Foust, Jeff (2013-09-12). "DARPA To Start Reusable Launch Vehicle Program". Space News. Archived from the original on September 13, 2013. Retrieved 2013-09-13.
  4. 1 2 3 Howell, Elizabeth (1 May 2015). "XS-1: DARPA's Experimental Spaceplane". Space.com. Retrieved 2015-05-14.
  5. 1 2 "Darpa Targets Lower Launch Costs With XS-1 Spaceplane". Aviation Week. 2 December 2013.
  6. "Defense Advanced Research Projects Agency". www.darpa.mil. Retrieved 2022-12-14.
  7. 1 2 3 4 "DARPA Picks Design for Next-Generation Spaceplane" May 2017
  8. 1 2 3 "Boeing drops out of DARPA Experimental Spaceplane program". Space News, 22 January 2020.
  9. "Experimental Spaceplane (Archived)". www.darpa.mil. Retrieved December 25, 2022.
  10. Lopata, Jacob; Carter, Preston (2004-08-12). "DARPA's RASCAL: Status, Challenges, and Accomplishments". Small Satellite Conference.
  11. Carter, Preston; Brown, Owen; Rice, Tharen; Tardy, Jason (2003-08-11). "RASCAL: DARPA's Solution to Responsive, Affordable, Micro-Satellite Space Access". Small Satellite Conference.
  12. "US Military Space Plane aims for 2017 lift off". spacedaily.com. Retrieved 2014-03-21.
  13. DARPA Awards $20 Million for Continued Development of a Military Space Plane - Defense-Update.com, 8 August 2015
  14. XS-1 Program to Ease Access to Space Enters Phase 2 - DARPA.mil, 7 April 2016
  15. Gebhardt, Chris (2016-07-13). "DARPA pushing new effort with Experimental Spaceplane, XS-1". NASASpaceFlight.com . Retrieved 2016-08-31.
  16. 1 2 3 "Boeing’s Phantom Express Vanishes into Thin Air". parabolicarc.com, 22 Jan 2020.
  17. "DARPA fires up XS-1 space plane quest | Cutting Edge". CNET News. Retrieved 2014-03-21.
  18. 1 2 Northrop Grumman Developing XS-1 Spaceplane For DARPA - Spacedaily.com, 20 August 2014
  19. DARPA issues first-phase solicitation for XS-1 hypersonic space plane for deploying satellites - Militaryaerospace.com, 15 November 2013
  20. Clark, Stephen (13 June 2017). "Boeing, DARPA to base XS-1 spaceplane at Cape Canaveral". Spaceflight Now. Retrieved 11 February 2020.
  21. Masten Space Systems Aims High on XS-1 Military Space Plane Project - Space.com, 26 August 2014
  22. "Boeing is building DARPA's new hypersonic space plane". Engadget. 24 May 2017. Retrieved 11 February 2020.
  23. "Aerojet Rocketdyne Selected As Main Propulsion Provider for Boeing and DARPA Experimental Spaceplane". 24 May 2017. Retrieved 25 May 2017.
  24. "Boeing: Phantom Express". www.boeing.com. Retrieved 19 July 2018.
  25. Clark, Stephen (July 18, 2018). "Rapid-fire engine tests raise hopes for DARPA's planned reusable spaceplane – Spaceflight Now". spaceflightnow.com. Pole Star Publications Ltd. Retrieved 19 July 2018.
  26. Mike Wall (2020-01-23). "DARPA scraps XS-1 military space plane project after Boeing drops out". Space.com. Retrieved 2024-01-23.