Yeast display

Last updated

Yeast display (or yeast surface display) is a protein engineering technique that uses the expression of recombinant proteins incorporated into the cell wall of yeast. This method can be used for several applications such as isolating and engineering antibodies [1] and determining host-microbe interactions. [2]

Contents

Development

The yeast display technique was first published by the laboratory of Professor K. Dane Wittrup and Eric T. Boder. [3] The technology was sold to Abbott Laboratories in 2001. [4]

How it works

A protein of interest is displayed as a fusion to the Aga2p protein on the surface of yeast. The Aga2p protein is used by yeast to mediate cell–cell contacts during yeast cell mating. As such, display of a protein via Aga2p likely projects the fusion protein from the cell surface, minimizing potential interactions with other molecules on the yeast cell wall[ citation needed ]. The use of magnetic separation and flow cytometry in conjunction with a yeast display library can be highly effective method to isolate high affinity protein ligands against nearly any receptor through directed evolution.[ citation needed ]

Advantages and disadvantages

Advantages of yeast display over other in vitro evolution methods include eukaryotic expression and post translational processing, quality control mechanisms of the eukaryotic secretory pathway, minimal avidity effects, and quantitative library screening through fluorescent-activated cell sorting (FACS)[ citation needed ]. Yeast are eukaryotic organisms that allow for complex post-translational modifications to proteins that no other display libraries are able to provide[ citation needed ].

Disadvantages include smaller mutant library sizes compared to alternative methods and differential glycosylation in yeast compared to mammalian cells. Alternative methods for protein evolution in vitro are mammalian display, phage display, ribosome display, bacterial display, and mRNA display [ citation needed ].

Related Research Articles

<span class="mw-page-title-main">Protein production</span>

Protein production is the biotechnological process of generating a specific protein. It is typically achieved by the manipulation of gene expression in an organism such that it expresses large amounts of a recombinant gene. This includes the transcription of the recombinant DNA to messenger RNA (mRNA), the translation of mRNA into polypeptide chains, which are ultimately folded into functional proteins and may be targeted to specific subcellular or extracellular locations.

<span class="mw-page-title-main">Mannose</span> Chemical compound

Mannose is a sugar monomer of the aldohexose series of carbohydrates. It is a C-2 epimer of glucose. Mannose is important in human metabolism, especially in the glycosylation of certain proteins. Several congenital disorders of glycosylation are associated with mutations in enzymes involved in mannose metabolism.

Protein engineering is the process of developing useful or valuable proteins through the design and production of unnatural polypeptides, often by altering amino acid sequences found in nature. It is a young discipline, with much research taking place into the understanding of protein folding and recognition for protein design principles. It has been used to improve the function of many enzymes for industrial catalysis. It is also a product and services market, with an estimated value of $168 billion by 2017.

<span class="mw-page-title-main">Polysome</span> Ribosomes bound to an mRNA molecule

A polyribosome is a group of ribosomes bound to an mRNA molecule like “beads” on a “thread”. It consists of a complex of an mRNA molecule and two or more ribosomes that act to translate mRNA instructions into polypeptides. Originally coined "ergosomes" in 1963, they were further characterized by Jonathan Warner, Paul M. Knopf, and Alex Rich.

A signal peptide is a short peptide present at the N-terminus of most newly synthesized proteins that are destined toward the secretory pathway. These proteins include those that reside either inside certain organelles, secreted from the cell, or inserted into most cellular membranes. Although most type I membrane-bound proteins have signal peptides, most type II and multi-spanning membrane-bound proteins are targeted to the secretory pathway by their first transmembrane domain, which biochemically resembles a signal sequence except that it is not cleaved. They are a kind of target peptide.

Peter G. Schultz is an American chemist. He is the CEO and Professor of Chemistry at The Scripps Research Institute, the founder and former director of GNF, and the founding director of the California Institute for Biomedical Research (Calibr), established in 2012. In August 2014, Nature Biotechnology ranked Schultz the #1 top translational researcher in 2013.

<span class="mw-page-title-main">Phage display</span> Biological technique to evolve proteins using bacteriophages

Phage display is a laboratory technique for the study of protein–protein, protein–peptide, and protein–DNA interactions that uses bacteriophages to connect proteins with the genetic information that encodes them. In this technique, a gene encoding a protein of interest is inserted into a phage coat protein gene, causing the phage to "display" the protein on its outside while containing the gene for the protein on its inside, resulting in a connection between genotype and phenotype. The proteins that the phages are displaying can then be screened against other proteins, peptides or DNA sequences, in order to detect interaction between the displayed protein and those of other molecules. In this way, large libraries of proteins can be screened and amplified in a process called in vitro selection, which is analogous to natural selection.

Ribosome display is a technique used to perform in vitro protein evolution to create proteins that can bind to a desired ligand. The process results in translated proteins that are associated with their mRNA progenitor which is used, as a complex, to bind to an immobilized ligand in a selection step. The mRNA-protein hybrids that bind well are then reverse transcribed to cDNA and their sequence amplified via PCR. The result is a nucleotide sequence that can be used to create tightly binding proteins.

<span class="mw-page-title-main">Aptamer</span> Oligonucleotide or peptide molecules that bind specific targets

Aptamers are short sequences of artificial DNA, RNA, XNA, or peptide that bind a specific target molecule, or family of target molecules. They exhibit a range of affinities, with variable levels of off-target binding and are sometimes classified as chemical antibodies. Aptamers and antibodies can be used in many of the same applications, but the nucleic acid-based structure of aptamers, which are mostly oligonucleotides, is very different from the amino acid-based structure of antibodies, which are proteins. This difference can make aptamers a better choice than antibodies for some purposes.

<span class="mw-page-title-main">Two-hybrid screening</span> Molecular biology technique

Two-hybrid screening is a molecular biology technique used to discover protein–protein interactions (PPIs) and protein–DNA interactions by testing for physical interactions between two proteins or a single protein and a DNA molecule, respectively.

Eukaryotic translation is the biological process by which messenger RNA is translated into proteins in eukaryotes. It consists of four phases: initiation, elongation, termination, and recapping.

Bacterial display is a protein engineering technique used for in vitro protein evolution. Libraries of polypeptides displayed on the surface of bacteria can be screened using flow cytometry or iterative selection procedures (biopanning). This protein engineering technique allows us to link the function of a protein with the gene that encodes it. Bacterial display can be used to find target proteins with desired properties and can be used to make affinity ligands which are cell-specific. This system can be used in many applications including the creation of novel vaccines, the identification of enzyme substrates and finding the affinity of a ligand for its target protein.

<span class="mw-page-title-main">Directed evolution</span> Protein engineering method

Directed evolution (DE) is a method used in protein engineering that mimics the process of natural selection to steer proteins or nucleic acids toward a user-defined goal. It consists of subjecting a gene to iterative rounds of mutagenesis, selection and amplification. It can be performed in vivo, or in vitro. Directed evolution is used both for protein engineering as an alternative to rationally designing modified proteins, as well as for experimental evolution studies of fundamental evolutionary principles in a controlled, laboratory environment.

mRNA display

mRNA display is a display technique used for in vitro protein, and/or peptide evolution to create molecules that can bind to a desired target. The process results in translated peptides or proteins that are associated with their mRNA progenitor via a puromycin linkage. The complex then binds to an immobilized target in a selection step. The mRNA-protein fusions that bind well are then reverse transcribed to cDNA and their sequence amplified via a polymerase chain reaction. The result is a nucleotide sequence that encodes a peptide with high affinity for the molecule of interest.

<span class="mw-page-title-main">EIF4G2</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 4 gamma 2 is a protein that in humans is encoded by the EIF4G2 gene.

<span class="mw-page-title-main">EIF3S6</span> Protein-coding gene in the species Homo sapiens

Eukaryotic translation initiation factor 3 subunit E (eIF3e) is a protein that in humans is encoded by the EIF3E gene.

<span class="mw-page-title-main">Cell division cycle 7-related protein kinase</span> Protein-coding gene in the species Homo sapiens

Cell division cycle 7-related protein kinase is an enzyme that in humans is encoded by the CDC7 gene. The Cdc7 kinase is involved in regulation of the cell cycle at the point of chromosomal DNA replication. The gene CDC7 appears to be conserved throughout eukaryotic evolution; this means that most eukaryotic cells have the Cdc7 kinase protein.

<span class="mw-page-title-main">Eukaryotic ribosome</span> Large and complex molecular machine

Ribosomes are a large and complex molecular machine that catalyzes the synthesis of proteins, referred to as translation. The ribosome selects aminoacylated transfer RNAs (tRNAs) based on the sequence of a protein-encoding messenger RNA (mRNA) and covalently links the amino acids into a polypeptide chain. Ribosomes from all organisms share a highly conserved catalytic center. However, the ribosomes of eukaryotes are much larger than prokaryotic ribosomes and subject to more complex regulation and biogenesis pathways. Eukaryotic ribosomes are also known as 80S ribosomes, referring to their sedimentation coefficients in Svedberg units, because they sediment faster than the prokaryotic (70S) ribosomes. Eukaryotic ribosomes have two unequal subunits, designated small subunit (40S) and large subunit (60S) according to their sedimentation coefficients. Both subunits contain dozens of ribosomal proteins arranged on a scaffold composed of ribosomal RNA (rRNA). The small subunit monitors the complementarity between tRNA anticodon and mRNA, while the large subunit catalyzes peptide bond formation.

Heterologous expression refers to the expression of a gene or part of a gene in a host organism that does not naturally have the gene or gene fragment in question. Insertion of the gene in the heterologous host is performed by recombinant DNA technology. The purpose of heterologous expression is often to determine the effects of mutations and differential interactions on protein function. It provides an easy path to efficiently express and experiment with combinations of genes and mutants that do not naturally occur.

There are many methods to investigate protein–protein interactions which are the physical contacts of high specificity established between two or more protein molecules involving electrostatic forces and hydrophobic effects. Each of the approaches has its own strengths and weaknesses, especially with regard to the sensitivity and specificity of the method. A high sensitivity means that many of the interactions that occur are detected by the screen. A high specificity indicates that most of the interactions detected by the screen are occurring in reality.

References

  1. Gai, S Annie; Wittrup, K Dane (2007). "Yeast surface display for protein engineering and characterization". Current Opinion in Structural Biology. 17 (4): 467–473. doi:10.1016/j.sbi.2007.08.012. ISSN   0959-440X. PMC   4038029 . PMID   17870469.
  2. Sonnert, Nicole D.; Rosen, Connor E.; Ghazi, Andrew R.; Franzosa, Eric A.; Duncan-Lowey, Brianna; González-Hernández, Jaime A.; Huck, John D.; Yang, Yi; Dai, Yile; Rice, Tyler A.; Nguyen, Mytien T.; Song, Deguang; Cao, Yiyun; Martin, Anjelica L.; Bielecka, Agata A. (April 2024). "A host–microbiota interactome reveals extensive transkingdom connectivity". Nature. 628 (8006): 171–179. doi:10.1038/s41586-024-07162-0. ISSN   1476-4687. PMID   38509360.
  3. Boder, Eric T.; Wittrup, K. Dane (1997). "Yeast surface display for screening combinatorial polypeptide libraries". Nature Biotechnology. 15 (6): 553–557. doi:10.1038/nbt0697-553. ISSN   1087-0156. PMID   9181578. S2CID   23922281.
  4. http://www.news.uiuc.edu/NEWS/01/1221biodisplaytechnology.html

Further reading