Centromere/kinetochore protein zw10 homolog is a protein that in humans is encoded by the ZW10 gene. [5] [6] This gene encodes a protein that is one of many involved in mechanisms to ensure proper chromosome segregation during cell division. The encoded protein binds to centromeres during the prophase, metaphase, and early anaphase cell division stages and to kinetochore microtubules during metaphase. [6]
Zeste white 10 (ZW10) was initially identified as a mitotic checkpoint protein involved in chromosome segregation, and then implicated in targeting cytoplasmic dynein and dynactin to mitotic kinetochores, but it is also important in non-dividing cells. These include cytoplasmic dynein targeting to Golgi and other membranes, and SNARE-mediated ER-Golgi trafficking. [7] [8] Dominant-negative ZW10, anti-ZW10 antibody, and ZW10 RNA interference (RNAi) cause Golgi dispersal. ZW10 RNAi also disperse endosomes and lysosomes. [8]
Drosophila kinetochore components Rough deal (Rod) and Zw10 are required for the proper functioning of the metaphase checkpoint in flies. [9] The eukaryotic spindle assembly checkpoint (SAC) monitors microtubule attachment to kinetochores and prevents anaphase onset until all kinetochores are aligned on the metaphase plate. It is an essential surveillance mechanism that ensures high fidelity chromosome segregation during mitosis. In higher eukaryotes, cytoplasmic dynein is involved in silencing the SAC by removing the checkpoint proteins Mad2 and the Rod-Zw10-Zwilch complex (RZZ) from aligned kinetochores. [10] [11] [12]
ZW10 has been shown to interact with RINT1 [13] and dynamitin. [14]
In cell biology, the spindle apparatus is the cytoskeletal structure of eukaryotic cells that forms during cell division to separate sister chromatids between daughter cells. It is referred to as the mitotic spindle during mitosis, a process that produces genetically identical daughter cells, or the meiotic spindle during meiosis, a process that produces gametes with half the number of chromosomes of the parent cell.
Dyneins are a family of cytoskeletal motor proteins that move along microtubules in cells. They convert the chemical energy stored in ATP to mechanical work. Dynein transports various cellular cargos, provides forces and displacements important in mitosis, and drives the beat of eukaryotic cilia and flagella. All of these functions rely on dynein's ability to move towards the minus-end of the microtubules, known as retrograde transport; thus, they are called "minus-end directed motors". In contrast, most kinesin motor proteins move toward the microtubules' plus-end, in what is called anterograde transport.
The spindle checkpoint, also known as the metaphase-to-anaphase transition, the spindle assembly checkpoint (SAC), the metaphase checkpoint, or the mitotic checkpoint, is a cell cycle checkpoint during metaphase of mitosis or meiosis that prevents the separation of the duplicated chromosomes (anaphase) until each chromosome is properly attached to the spindle. To achieve proper segregation, the two kinetochores on the sister chromatids must be attached to opposite spindle poles. Only this pattern of attachment will ensure that each daughter cell receives one copy of the chromosome. The defining biochemical feature of this checkpoint is the stimulation of the anaphase-promoting complex by M-phase cyclin-CDK complexes, which in turn causes the proteolytic destruction of cyclins and proteins that hold the sister chromatids together.
A kinetochore is a disc-shaped protein structure associated with duplicated chromatids in eukaryotic cells where the spindle fibers attach during cell division to pull sister chromatids apart. The kinetochore assembles on the centromere and links the chromosome to microtubule polymers from the mitotic spindle during mitosis and meiosis. The term kinetochore was first used in a footnote in a 1934 Cytology book by Lester W. Sharp and commonly accepted in 1936. Sharp's footnote reads: "The convenient term kinetochore has been suggested to the author by J. A. Moore", likely referring to John Alexander Moore who had joined Columbia University as a freshman in 1932.
Aurora kinase B is a protein that functions in the attachment of the mitotic spindle to the centromere and in cytokinesis.
Dynactin subunit 1 is a protein that in humans is encoded by the DCTN1 gene.
Mitotic checkpoint serine/threonine-protein kinase BUB1 beta is an enzyme that in humans is encoded by the BUB1B gene. Also known as BubR1, this protein is recognized for its mitotic roles in the spindle assembly checkpoint (SAC) and kinetochore-microtubule interactions that facilitate chromosome migration and alignment. BubR1 promotes mitotic fidelity and protects against aneuploidy by ensuring proper chromosome segregation between daughter cells. BubR1 is proposed to prevent tumorigenesis.
Dynactin is a 23 subunit protein complex that acts as a co-factor for the microtubule motor cytoplasmic dynein-1. It is built around a short filament of actin related protein-1 (Arp1).
Dynactin subunit 2 is a protein that in humans is encoded by the DCTN2 gene.
Microtubule-associated protein RP/EB family member 1 is a protein that in humans is encoded by the MAPRE1 gene.
Alpha-centractin (yeast) or ARP1 is a protein that in humans is encoded by the ACTR1A gene.
Cytoplasmic dynein 1 heavy chain 1 is a protein that in humans is encoded by the DYNC1H1 gene. Dynein is a molecular motor protein that is responsible for the transport of numerous cellular cargoes to minus ends of microtubules, which are typically found in the center of a cell, or the cell body of neurons. It is located on the 14th chromosome at position 14q32.31. Cytoplasmic dynein transports cargoes along the axon in the retrograde direction, bringing materials from the axon to the cell body. Dynein heavy chain binds microtubules and hydrolyzes ATP at its C-terminal head. It binds cargo via interaction with other dynein subunits at its N-terminal tail.
Centromere-associated protein E is a protein that in humans is encoded by the CENPE gene.
Kinetochore protein Nuf2 is a protein that in humans is encoded by the NUF2 gene.
Cytoplasmic linker associated protein 2, also known as CLASP2, is a protein which in humans is encoded by the CLASP2 gene.
ZW10 interactor (Zwint-1) is a protein that in humans is encoded by the ZWINT gene.
Dynactin subunit 3 is a protein that in humans is encoded by the DCTN3 gene.
Mad1 is a non-essential protein which in yeast has a function in the spindle assembly checkpoint (SAC). This checkpoint monitors chromosome attachment to spindle microtubules and prevents cells from starting anaphase until the spindle is built up. The name Mad refers to the observation that mutant cells are mitotic arrest deficient (MAD) during microtubule depolymerization. Mad1 recruits the anaphase inhibitor Mad2 to unattached kinetochores and is essential for Mad2-Cdc20 complex formation in vivo but not in vitro. In vivo, Mad1 acts as a competitive inhibitor of the Mad2-Cdc20 complex. Mad1 is phosphorylated by Mps1 which then leads together with other activities to the formation of the mitotic checkpoint complex (MCC). Thereby it inhibits the activity of the anaphase-promoting complex/cyclosome (APC/C). Homologues of Mad1 are conserved in eukaryotes from yeast to mammals.
In molecular biology, DCTN6 is that subunit of the dynactin protein complex that is encoded by the p27 gene. Dynactin is the essential component for microtubule-based cytoplasmic dynein motor activity in intracellular transport of a variety of cargoes and organelles.
J. Richard McIntosh is a Distinguished Professor Emeritus in Molecular, Cellular, and Developmental Biology at the University of Colorado Boulder. McIntosh first graduated from Harvard with a BA in Physics in 1961, and again with a Ph.D. in Biophysics in 1968. He began his teaching career at Harvard but has spent most of his career at the University of Colorado Boulder. At the University of Colorado Boulder, McIntosh taught biology courses at both the undergraduate and graduate levels. Additionally, he created an undergraduate course in the biology of cancer towards the last several years of his teaching career. McIntosh's research career looks at a variety of things, including different parts of mitosis, microtubules, and motor proteins.