F-15,599

Last updated
F-15,599
F-15,599.svg
Clinical data
Routes of
administration
Oral
Legal status
Legal status
  • Investigational
Identifiers
  • 3-Chloro-4-fluorophenyl-[4-fluoro-4-[[(5-methylpyrimidin-2-ylmethyl)amino]methyl]piperidin-1-yl]methanone
CAS Number
PubChem CID
IUPHAR/BPS
ChemSpider
UNII
Chemical and physical data
Formula C19H22ClF2N4O
Molar mass 395.86 g·mol−1
3D model (JSmol)
  • Cc3cnc(nc3)CNCC(F)(CC2)CCN2C(=O)c(cc1Cl)ccc1F
  • InChI=1S/C19H21ClF2N4O/c1-13-9-24-17(25-10-13)11-23-12-19(22)4-6-26(7-5-19)18(27)14-2-3-16(21)15(20)8-14/h2-3,8-10,23H,4-7,11-12H2,1H3 X mark.svgN
  • Key:WAAXKNFGOFTGLP-UHFFFAOYSA-N X mark.svgN
 X mark.svgNYes check.svgY  (what is this?)    (verify)

F-15,599, also known as NLX-101, is a potent and selective 5-HT1A receptor full agonist. [1] [2] It displays functional selectivity (also known as "biased agonism") by strongly activating 5-HT1A receptors in the postsynaptic prefrontal cortex while having little effect on somatodendritic autoreceptors in the raphe nucleus. [1] [2] As a result, it has been touted as a preferential postsynaptic 5-HT1A receptor agonist and has been investigated as a novel potential antidepressant. [1] [2] [3]

Contents

In cognitive tests in rodent, F-15,599 attenuates memory deficits elicited by the NMDA receptor antagonist PCP, suggesting that it may improve cognitive function in disorders such as schizophrenia. [4]

A subsequent study showed that F-15,599 reduces breathing irregularity and apneas observed in mice with mutations of the MeCP2 gene. [5] Dysruption of MeCP2 gene expression underlies Rett syndrome, a debilitating neurodevelopmental orphan disease.

F-15,599 was discovered and initially developed by Pierre Fabre Médicament, a French pharmaceuticals company. In September 2013, F-15,599 was out-licensed to Neurolixis, a California-based biotechnology company. Neurolixis announced that it intends to re-purpose F-15,599 for the treatment of Rett syndrome. [6] and obtained orphan drug designation from the United States Food and Drug Administration (FDA) [7] and from the European Commission for this indication. [8]

Researchers at the University of Bristol are investigating the activity of F-15599 in animal models of Rett Syndrome, with support from the International Rett Syndrome Foundation. [9] In June 2015, the Rett Syndrome Research Trust awarded a grant to Neurolixis to advance F-15599 to clinical development. [10]

See also

Related Research Articles

<span class="mw-page-title-main">Aripiprazole</span> Atypical antipsychotic

Aripiprazole, sold under the brand names Abilify and Aristada, among others, is an atypical antipsychotic. It is primarily used in the treatment of schizophrenia and bipolar disorder; other uses include as an add-on treatment in major depressive disorder and obsessive compulsive disorder (OCD), tic disorders, and irritability associated with autism. Aripiprazole is taken by mouth or via injection into a muscle. A Cochrane review found low-quality evidence of effectiveness in treating schizophrenia.

<span class="mw-page-title-main">Azapirone</span> Drug class of psycotropic drugs

Azapirones are a class of drugs used as anxiolytics, antidepressants, and antipsychotics. They are commonly used as add-ons to other antidepressants, such as selective serotonin reuptake inhibitors (SSRIs).

<span class="mw-page-title-main">Pindolol</span> Chemical compound

Pindolol, sold under the brand name Visken among others, is a nonselective beta blocker which is used in the treatment of hypertension. It is also an antagonist of the serotonin 5-HT1A receptor, preferentially blocking inhibitory 5-HT1A autoreceptors, and has been researched as an add-on therapy to various antidepressants, such as clomipramine and the selective serotonin reuptake inhibitors (SSRIs), in the treatment of depression and obsessive-compulsive disorder.

<span class="mw-page-title-main">Bifeprunox</span> Experimental dopamine D2 receptor partial agonist researched as an antipsychotic agent

Bifeprunox (INN) (code name DU-127,090) is an atypical antipsychotic which, similarly to aripiprazole, combines minimal D2 receptor agonism with serotonin receptor agonism. It was under development for the treatment of schizophrenia, psychosis and Parkinson's disease.

5-HT<sub>1A</sub> receptor Serotonin receptor protein distributed in the cerebrum and raphe nucleus

The serotonin 1A receptor is a subtype of serotonin receptors, or 5-HT receptors, that binds serotonin, also known as 5-HT, a neurotransmitter. 5-HT1A is expressed in the brain, spleen, and neonatal kidney. It is a G protein-coupled receptor (GPCR), coupled to the Gi protein, and its activation in the brain mediates hyperpolarization and reduction of firing rate of the postsynaptic neuron. In humans, the serotonin 1A receptor is encoded by the HTR1A gene.

<span class="mw-page-title-main">8-OH-DPAT</span> Chemical compound

8-OH-DPAT is a research chemical of the aminotetralin chemical class which was developed in the 1980s and has been widely used to study the function of the 5-HT1A receptor. It was one of the first major 5-HT1A receptor full agonists to have been discovered.

<span class="mw-page-title-main">WAY-100635</span> Chemical compound

WAY-100635 is a piperazine drug and research chemical widely used in scientific studies. It was originally believed to act as a selective 5-HT1A receptor antagonist, but subsequent research showed that it also acts as potent full agonist at the D4 receptor. It is sometimes referred to as a silent antagonist at the former receptor. It is closely related to WAY-100135.

<span class="mw-page-title-main">S-15535</span> Chemical compound

S-15535 is a phenylpiperazine drug which is a potent and highly selective 5-HT1A receptor ligand that acts as an agonist and antagonist at the presynaptic and postsynaptic 5-HT1A receptors, respectively. It has anxiolytic properties.

<span class="mw-page-title-main">Befiradol</span> Chemical compound

Befiradol is an experimental drug being studied for the treatment of levodopa-induced dyskinesia. It is a potent and selective 5-HT1A receptor full agonist.

<span class="mw-page-title-main">Eptapirone</span> Chemical compound

Eptapirone (F-11,440) is a very potent and highly selective 5-HT1A receptor full agonist of the azapirone family. Its affinity for the 5-HT1A receptor was reported to be 4.8 nM (Ki), and its intrinsic activity approximately equal to that of serotonin.

<span class="mw-page-title-main">Tiospirone</span> Atypical antipsychotic drug

Tiospirone (BMY-13,859), also sometimes called tiaspirone or tiosperone, is an atypical antipsychotic of the azapirone class. It was investigated as a treatment for schizophrenia in the late 1980s and was found to have an effectiveness equivalent to those of typical antipsychotics in clinical trials but without causing extrapyramidal side effects. However, development was halted and it was not marketed. Perospirone, another azapirone derivative with antipsychotic properties, was synthesized and assayed several years after tiospirone. It was found to be both more potent and more selective in comparison and was commercialized instead.

<span class="mw-page-title-main">Enilospirone</span> Chemical compound

Enilospirone (CERM-3,726) is a selective 5-HT1A receptor agonist of the azapirone class.

<span class="mw-page-title-main">Roxindole</span> Dopaminergic & serotonergic drug developed for schizophrenia treatment

Roxindole (EMD-49,980) is a dopaminergic and serotonergic drug which was originally developed by Merck KGaA for the treatment of schizophrenia. In clinical trials its antipsychotic efficacy was only modest but it was unexpectedly found to produce potent and rapid antidepressant and anxiolytic effects. As a result, roxindole was further researched for the treatment of depression instead. It has also been investigated as a therapy for Parkinson's disease and prolactinoma.

<span class="mw-page-title-main">Sarizotan</span> Chemical compound

Sarizotan (EMD-128,130) is a selective 5-HT1A receptor agonist and D2 receptor antagonist, which has antipsychotic effects, and has also shown efficacy in reducing dyskinesias resulting from long-term anti-Parkinsonian treatment with levodopa.

<span class="mw-page-title-main">CP-93129</span> Chemical compound

CP-93129 is a drug which acts as a potent and selective serotonin 5-HT1B receptor agonist, with approximately 150x and 200x selectivity over the closely related 5-HT1D and 5-HT1A receptors. It is used in the study of 5-HT1B receptors in the brain, particularly their role in modulating the release of other neurotransmitters.

<span class="mw-page-title-main">L-741,626</span> Chemical compound

L-741,626 is a drug which acts as a potent and selective antagonist for the dopamine receptor D2. It has good selectivity over the related D3 and D4 subtypes and other receptors. L-741,626 is used for laboratory research into brain function and has proved particularly useful for distinguishing D2 mediated responses from those produced by the closely related D3 subtype, and for studying the roles of these subtypes in the action of cocaine and amphetamines in the brain.

<span class="mw-page-title-main">F-15063</span> Chemical compound

F-15,063 is an orally active potential antipsychotic, and an antagonist at the D2/D3 receptors, partial agonist at the D4 receptor, and agonist at the 5-HT1A receptors. It has greater efficacy at the 5-HT1A receptors than other antipsychotics, such as clozapine, aripiprazole, and ziprasidone. This greater efficacy may lead to enhanced antipsychotic properties, as antipsychotics that lack 5-HT1A affinity are associated with increased risk of extrapyramidal symptoms, and lack of activity against the negative symptoms of schizophrenia.

A monoamine reuptake inhibitor (MRI) is a drug that acts as a reuptake inhibitor of one or more of the three major monoamine neurotransmitters serotonin, norepinephrine, and dopamine by blocking the action of one or more of the respective monoamine transporters (MATs), which include the serotonin transporter (SERT), norepinephrine transporter (NET), and dopamine transporter (DAT). This in turn results in an increase in the synaptic concentrations of one or more of these neurotransmitters and therefore an increase in monoaminergic neurotransmission.

<span class="mw-page-title-main">Neurolixis</span>

Neurolixis is a biopharmaceutical company focused on novel drugs for the treatment of human central nervous system diseases.

Lisa M. Monteggia is an American neuroscientist who is a Professor in the Department of Pharmacology, Psychiatry & Psychology as well as the Barlow Family Director of the Vanderbilt Brain Institute at Vanderbilt University in Nashville, Tennessee. Monteggia probes the molecular mechanisms underlying psychiatric disorders and has made critical discoveries about the role of the neurotrophins in antidepressant efficacy, the antidepressant mechanisms of Ketamine, as well as the epigenetic regulation of synaptic transmission by MeCP2.

References

  1. 1 2 3 Maurel JL, Autin JM, Funes P, Newman-Tancredi A, Colpaert F, Vacher B (October 2007). "High-efficacy 5-HT1A agonists for antidepressant treatment: a renewed opportunity". Journal of Medicinal Chemistry. 50 (20): 5024–33. doi:10.1021/jm070714l. PMID   17803293.
  2. 1 2 3 Newman-Tancredi A, Martel JC, Assié MB, et al. (January 2009). "Signal transduction and functional selectivity of F15599, a preferential post-synaptic 5-HT1A receptor agonist". British Journal of Pharmacology. 156 (2): 338–53. doi:10.1111/j.1476-5381.2008.00001.x. PMC   2697830 . PMID   19154445.
  3. Assié MB, Bardin L, Auclair AL, et al. (November 2010). "F15599, a highly selective post-synaptic 5-HT(1A) receptor agonist: in-vivo profile in behavioural models of antidepressant and serotonergic activity". The International Journal of Neuropsychopharmacology. 13 (10): 1285–98. doi: 10.1017/S1461145709991222 . PMID   20059805.
  4. Depoortère R, Auclair AL, Bardin L, Colpaert FC, Vacher B, Newman-Tancredi A (September 2010). "F15599, a preferential post-synaptic 5-HT1A receptor agonist: activity in models of cognition in comparison with reference 5-HT1A receptor agonists". European Neuropsychopharmacology. 20 (9): 641–54. doi:10.1016/j.euroneuro.2010.04.005. PMID   20488670. S2CID   22222213.
  5. Levitt ES, Hunnicutt BJ, Knopp SJ, Williams JT, Bissonnette JM (December 2013). "A selective 5-HT1a receptor agonist improves respiration in a mouse model of Rett syndrome". Journal of Applied Physiology. 115 (11): 1626–33. doi:10.1152/japplphysiol.00889.2013. PMC   3882741 . PMID   24092697.
  6. http://neurolixis.com/images/stories/nlx_pf_license_23sept13.pdf%5B%5D
  7. "Enforcement Reports". Archived from the original on 2015-02-24. Retrieved 2014-03-03.
  8. "Public Health - European Commission".
  9. "April: Rett syndrome research | News and features | University of Bristol".
  10. "RSRT Awards $530,000 to Neurolixis for Clinical Development of NLX-101". 24 June 2015.