Xenon fluoride nitrate

Last updated
Xenon fluoride nitrate
Xenon fluoride nitrate.svg
Identifiers
3D model (JSmol)
  • InChI=1S/FNO3Xe/c1-6-5-2(3)4
    Key: YCLGDVQFVLWCLS-UHFFFAOYSA-N
  • [O-][N+](=O)O[Xe]F
Properties
FNO3Xe
Molar mass 212.295 g·mol−1
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

Xenon fluoride nitrate, also known as fluoroxenonium nitrate, is the chemical compound with formula FXeONO2. [1] [2]

Contents

Synthesis

This compound is formed via the reaction: [3]

[FXeOXeFXeF][AsF6] + 2NO2F → FXeONO2 + NO2AsF6.

Purification of FXeONO2 can then take place by dissolving in SO2ClF, which leaves the nitronium arsenic hexafluoride behind as a solid. [3]

An alternate low yield method to make FXeONO2 is to dissolve xenon difluoride in liquid dinitrogen tetroxide at 0 °C. [3]

XeF2 + NO+ + NO3 → FXeONO2 + NOF

This method is inefficient as not much nitrate ion exists in the liquid and the xenon fluoride nitrate decomposes. [3]

Another method claimed to make this substance is: [3]

XeF2 + HNO3 → FXeONO2 + HF

Properties

FXeONO2 is a white crystalline material. [3] The space group of the crystals is P21/c, which is monoclinic. The unit cell contains four molecules with a total volume of 386.6 Å3. The unit cell dimensions are a = 4.6663 Å, b = 8.799 Å c = 9.415 Å, with non-perpendicular angle β = 90.325°. [3] With a molecular weight of 212.3, the crystal has density 3.648. (These measurements at -173 °C.) [3] The bond lengths in the molecule are 1.992 Å for Xe–F, 2.126 Å for Xe–O, 1.36 Å for O–NO2, 1.199 for N–Ocis and 1.224 Å for N–Otrans. [3] The bond angles are 177.6° for F–Xe–O, 114.7° for Xe-O-N, 114.5° for (Xe)O–N–Ocis, 118.4° for (Xe)O–N–Otrans and 127.1° for Ocis–N–Otrans. [3] The bond lengths and angles on the xenon atom are similar to that in FXeOSO2F and FXeOTeF5, indicating a polar oxygen bond. The Xe–O–N angle is larger than those in halogen nitrates, which indicates a lower bond density for the Xe–O bond. The N–Ocis bond length is longer than the N–Otrans bond length, opposite to other halogen nitrates. [3]

FXeONO2 is not particularly stable and slowly breaks down at -78 °C, yielding XeF2·N2O4. This happens on a timescale of several days. [3] At 0 °C, FXeONO2 has a half life of seven hours, decomposing to XeF2. [3]

Related Research Articles

<span class="mw-page-title-main">Nitronium ion</span> Polyatomic ion (NO₂, charge +1)

The nitronium ion, [NO2]+, is a cation. It is an onium ion because its nitrogen atom has +1 charge, similar to ammonium ion [NH4]+. It is created by the removal of an electron from the paramagnetic nitrogen dioxide molecule NO2, or the protonation of nitric acid HNO3.

<span class="mw-page-title-main">Xenon hexafluoroplatinate</span> Chemical compound

Xenon hexafluoroplatinate is the product of the reaction of platinum hexafluoride with xenon, in an experiment that proved the chemical reactivity of the noble gases. This experiment was performed by Neil Bartlett at the University of British Columbia, who formulated the product as "Xe+[PtF6]", although subsequent work suggests that Bartlett's product was probably a salt mixture and did not in fact contain this specific salt.

In chemistry, noble gas compounds are chemical compounds that include an element from the noble gases, group 18 of the periodic table. Although the noble gases are generally unreactive elements, many such compounds have been observed, particularly involving the element xenon.

In chemistry, a hypervalent molecule is a molecule that contains one or more main group elements apparently bearing more than eight electrons in their valence shells. Phosphorus pentachloride, sulfur hexafluoride, chlorine trifluoride, the chlorite ion, and the triiodide ion are examples of hypervalent molecules.

In chemistry, an interhalogen compound is a molecule which contains two or more different halogen atoms and no atoms of elements from any other group.

<span class="mw-page-title-main">Oxygen difluoride</span> Chemical compound

Oxygen difluoride is a chemical compound with the formula OF2. As predicted by VSEPR theory, the molecule adopts a bent molecular geometry. It is a strong oxidizer and has attracted attention in rocketry for this reason. With a boiling point of −144.75 °C, OF2 is the most volatile (isolable) triatomic compound. The compound is one of many known oxygen fluorides.

<span class="mw-page-title-main">Xenon hexafluoride</span> Chemical compound

Xenon hexafluoride is a noble gas compound with the formula XeF6. It is one of the three binary fluorides of xenon that have been studied experimentally, the other two being XeF2 and XeF4. All known are exergonic and stable at normal temperatures. XeF6 is the strongest fluorinating agent of the series. It is a colorless solid that readily sublimes into intensely yellow vapors.

<span class="mw-page-title-main">Xenon difluoride</span> Chemical compound

Xenon difluoride is a powerful fluorinating agent with the chemical formula XeF
2
, and one of the most stable xenon compounds. Like most covalent inorganic fluorides it is moisture-sensitive. It decomposes on contact with water vapor, but is otherwise stable in storage. Xenon difluoride is a dense, colourless crystalline solid.

<span class="mw-page-title-main">Xenon oxytetrafluoride</span> Chemical compound

Xenon oxytetrafluoride is an inorganic chemical compound. It is an unstable colorless liquid with a melting point of −46.2 °C that can be synthesized by partial hydrolysis of XeF
6
, or the reaction of XeF
6
with silica or NaNO
3
:

The chemical element nitrogen is one of the most abundant elements in the universe and can form many compounds. It can take several oxidation states; but the most common oxidation states are -3 and +3. Nitrogen can form nitride and nitrate ions. It also forms a part of nitric acid and nitrate salts. Nitrogen compounds also have an important role in organic chemistry, as nitrogen is part of proteins, amino acids and adenosine triphosphate.

<span class="mw-page-title-main">Dioxygenyl</span> Chemical compound

The dioxygenyl(or dioxyl) ion, O+
2
, is a rarely-encountered oxycation in which both oxygen atoms have a formal oxidation state of +1/2. It is formally derived from oxygen by the removal of an electron:

<span class="mw-page-title-main">Selenoyl fluoride</span> Chemical compound

Selenoyl fluoride, selenoyl difluoride, selenium oxyfluoride, or selenium dioxydifluoride is a chemical compound with the formula SeO2F2.

In chemistry, molecular oxohalides (oxyhalides) are a group of chemical compounds in which both oxygen and halogen atoms are attached to another chemical element A in a single molecule. They have the general formula AOmXn, where X is a halogen. Known oxohalides have fluorine (F), chlorine (Cl), bromine (Br), and/or iodine (I) in their molecules. The element A may be a main group element, a transition element, a rare earth element or an actinide. The term oxohalide, or oxyhalide, may also refer to minerals and other crystalline substances with the same overall chemical formula, but having an ionic structure.

Polyhalogen ions are a group of polyatomic cations and anions containing halogens only. The ions can be classified into two classes, isopolyhalogen ions which contain one type of halogen only, and heteropolyhalogen ions with more than one type of halogen.

Fluorine forms a great variety of chemical compounds, within which it always adopts an oxidation state of −1. With other atoms, fluorine forms either polar covalent bonds or ionic bonds. Most frequently, covalent bonds involving fluorine atoms are single bonds, although at least two examples of a higher order bond exist. Fluoride may act as a bridging ligand between two metals in some complex molecules. Molecules containing fluorine may also exhibit hydrogen bonding. Fluorine's chemistry includes inorganic compounds formed with hydrogen, metals, nonmetals, and even noble gases; as well as a diverse set of organic compounds. For many elements the highest known oxidation state can be achieved in a fluoride. For some elements this is achieved exclusively in a fluoride, for others exclusively in an oxide; and for still others the highest oxidation states of oxides and fluorides are always equal.

Xenon nitrate, also called xenon dinitrate, is an inorganic compound consisting of one xenon atom bonded to two nitrate groups. It can be made by reacting xenon difluoride with anhydrous nitric acid, but it only exists transiently before decomposing, and therefore it has not been isolated and full characterized. A related compound, xenon fluoride nitrate, has been made and is stable enough to be studied in more detail.

<span class="mw-page-title-main">Trifluoramine oxide</span> Chemical compound

Trifluoramine oxide or Nitrogen trifluoride oxide (F3NO) is an inorganic molecule with strong fluorinating powers.

<span class="mw-page-title-main">Chlorine trifluoride oxide</span> Chemical compound

Chlorine oxide trifluoride or chlorine trifluoride oxide is a corrosive liquid molecular compound with formula ClOF3. It was developed secretly as a rocket fuel oxidiser.

<span class="mw-page-title-main">Bis(pentafluorophenyl)xenon</span> Chemical compound

Bis(pentafluorophenyl)xenon is an unstable organic compound of xenon. It consists of two fluorinated phenyl rings connected to xenon.

<span class="mw-page-title-main">Radon compounds</span>

Radon compounds are chemical compounds formed by the element radon (Rn). Radon is a noble gas, i.e. a zero-valence element, and is chemically not very reactive. The 3.8-day half-life of radon-222 makes it useful in physical sciences as a natural tracer. Because radon is a gas under normal circumstances, and its decay-chain parents are not, it can readily be extracted from them for research.

References

  1. Moran, Matthew D.; David S. Brock; Hélène P. A. Mercier; Gary J. Schrobilgen (2010). "Xe3OF3+, a Precursor to a Noble-Gas Nitrate; Syntheses and Structural Characterizations of FXeONO2, XeF2·HNO3, and XeF2·N2O4". Journal of the American Chemical Society. 132 (39): 13823–13839. doi:10.1021/ja105618w. ISSN   0002-7863. PMID   20843046.
  2. Atta-ur-Rahman (2006-01-01). Advances in Organic Synthesis: Modern Organofluorine Chemistry-Synthetic Aspects. Bentham Science Publishers. p. 78. ISBN   9781608051984 . Retrieved 5 October 2014.
  3. 1 2 3 4 5 6 7 8 9 10 11 12 13 Moran, Matthew D. (2007). Synthesis and Structural Characterization of new Xenon(II) Compounds and the Use of a Xenon(II) Cation as an Oxidant for the Preparation of Halogenated Hydrocarbons (PDF). McMaster University. pp. 42, 99–145. Retrieved 4 Oct 2014.