ITPR2

Last updated
ITPR2
Identifiers
Aliases ITPR2 , CFAP48, IP3R2, ANHD, INSP3R2, inositol 1,4,5-trisphosphate receptor type 2
External IDs OMIM: 600144 MGI: 99418 HomoloGene: 37593 GeneCards: ITPR2
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_002223

NM_010586
NM_019923

RefSeq (protein)

NP_002214

NP_034716
NP_064307

Location (UCSC) Chr 12: 26.34 – 26.83 Mb Chr 6: 146.01 – 146.4 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Inositol 1,4,5-trisphosphate receptor, type 2, also known as ITPR2, is a protein which in humans is encoded by the ITPR2 gene. [5] The protein encoded by this gene is both a receptor for inositol triphosphate and a calcium channel. [6]

Contents

See also

Related Research Articles

Inositol trisphosphate or inositol 1,4,5-trisphosphate abbreviated InsP3 or Ins3P or IP3 is an inositol phosphate signaling molecule. It is made by hydrolysis of phosphatidylinositol 4,5-bisphosphate (PIP2), a phospholipid that is located in the plasma membrane, by phospholipase C (PLC). Together with diacylglycerol (DAG), IP3 is a second messenger molecule used in signal transduction in biological cells. While DAG stays inside the membrane, IP3 is soluble and diffuses through the cell, where it binds to its receptor, which is a calcium channel located in the endoplasmic reticulum. When IP3 binds its receptor, calcium is released into the cytosol, thereby activating various calcium regulated intracellular signals.

<span class="mw-page-title-main">Inositol trisphosphate receptor</span> Class of transport proteins

Inositol trisphosphate receptor (InsP3R) is a membrane glycoprotein complex acting as a Ca2+ channel activated by inositol trisphosphate (InsP3). InsP3R is very diverse among organisms, and is necessary for the control of cellular and physiological processes including cell division, cell proliferation, apoptosis, fertilization, development, behavior, learning and memory. Inositol triphosphate receptor represents a dominant second messenger leading to the release of Ca2+ from intracellular store sites. There is strong evidence suggesting that the InsP3R plays an important role in the conversion of external stimuli to intracellular Ca2+ signals characterized by complex patterns relative to both space and time, such as Ca2+ waves and oscillations.

<span class="mw-page-title-main">2-Aminoethoxydiphenyl borate</span> Chemical compound

2-Aminoethoxydiphenyl borate (2-APB) is a chemical that acts to inhibit both IP3 receptors and TRP channels (although it activates TRPV1, TRPV2, & TRPV3 at higher concentrations). In research it is used to manipulate intracellular release of calcium ions (Ca2+) and modify TRP channel activity, although the lack of specific effects make it less than ideal under some circumstances. Additionally, there is evidence that 2-APB acts directly to inhibit gap junctions made of connexin. Increasing evidence showed that 2-APB is a powerful modifier of store-operated calcium channels (SOC) function, low concentration of 2-APB can enhance SOC while high concentration induces a transient increase followed by complete inhibition.

<span class="mw-page-title-main">TRPC1</span> Protein and coding gene in humans

Transient receptor potential canonical 1 (TRPC1) is a protein that in humans is encoded by the TRPC1 gene.

<span class="mw-page-title-main">ITPKB</span> Protein-coding gene in the species Homo sapiens

Inositol-trisphosphate 3-kinase B is an enzyme that in humans is encoded by the ITPKB gene.

<span class="mw-page-title-main">ITPR1</span> Protein-coding gene in the species Homo sapiens

Inositol 1,4,5-trisphosphate receptor type 1 is a protein that in humans is encoded by the ITPR1 gene.

<span class="mw-page-title-main">GPR75</span> Protein-coding gene in the species Homo sapiens

Probable G-protein coupled receptor 75 is a protein that in humans is encoded by the GPR75 gene.

<span class="mw-page-title-main">Inositol-trisphosphate 3-kinase</span> Class of enzymes

Inositol (1,4,5) trisphosphate 3-kinase (EC 2.7.1.127), abbreviated here as ITP3K, is an enzyme that facilitates a phospho-group transfer from adenosine triphosphate to 1D-myo-inositol 1,4,5-trisphosphate. This enzyme belongs to the family of transferases, specifically those transferring phosphorus-containing groups (phosphotransferases) with an alcohol group as acceptor. The systematic name of this enzyme class is ATP:1D-myo-inositol-1,4,5-trisphosphate 3-phosphotransferase. ITP3K catalyzes the transfer of the gamma-phosphate from ATP to the 3-position of inositol 1,4,5-trisphosphate to form inositol 1,3,4,5-tetrakisphosphate. ITP3K is highly specific for the 1,4,5-isomer of IP3, and it exclusively phosphorylates the 3-OH position, producing Ins(1,3,4,5)P4, also known as inositol tetrakisphosphate or IP4.

<span class="mw-page-title-main">PLCB2</span> Protein-coding gene in the species Homo sapiens

1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta-2 is an enzyme that in humans is encoded by the PLCB2 gene.

<span class="mw-page-title-main">PLCD1</span> Protein-coding gene in the species Homo sapiens

1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-1 is an enzyme that in humans is encoded by the PLCD1 gene. PLCd1 is essential to maintain homeostasis of the skin.

<span class="mw-page-title-main">PLCE1</span> Protein-coding gene in the species Homo sapiens

Phospholipase C epsilon 1 (PLCE1) is an enzyme that in humans is encoded by the PLCE1 gene. This gene encodes a phospholipase enzyme (PLCE1) that catalyzes the hydrolysis of phosphatidylinositol-4,5-bisphosphate to generate two second messengers: inositol 1,4,5-triphosphate (IP3) and diacylglycerol (DAG). Mutations in this gene cause early-onset nephrotic syndrome and have been associated with respiratory chain deficiency with diffuse mesangial sclerosis.

<span class="mw-page-title-main">PLCD3</span> Protein-coding gene in the species Homo sapiens

1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase delta-3 is an enzyme that in humans is encoded by the PLCD3 gene.

<span class="mw-page-title-main">ITPKA</span> Protein-coding gene in the species Homo sapiens

Inositol-trisphosphate 3-kinase A is an enzyme that in humans is encoded by the ITPKA gene.

<span class="mw-page-title-main">Calcium-binding protein 1</span> Protein-coding gene in the species Homo sapiens

Calcium binding protein 1 is a protein that in humans is encoded by the CABP1 gene. Calcium-binding protein 1 is a calcium-binding protein discovered in 1999. It has two EF hand motifs and is expressed in neuronal cells in such areas as hippocampus, habenular nucleus of the epithalamus, Purkinje cell layer of the cerebellum, and the amacrine cells and cone bipolar cells of the retina.

<span class="mw-page-title-main">PLCB4</span> Protein-coding gene in the species Homo sapiens

1-Phosphatidylinositol-4,5-bisphosphate phosphodiesterase beta-4 is an enzyme that in humans is encoded by the PLCB4 gene.

<span class="mw-page-title-main">AHCYL1</span> Protein-coding gene in the species Homo sapiens

Putative adenosylhomocysteinase 2 is an enzyme that in humans is encoded by the AHCYL1 gene.

<span class="mw-page-title-main">INPP5A</span> Protein-coding gene in the species Homo sapiens

Type I inositol-1,4,5-trisphosphate 5-phosphatase is an enzyme that in humans is encoded by the INPP5A gene.

<span class="mw-page-title-main">ITPR3</span> Protein-coding gene in the species Homo sapiens

Inositol 1,4,5-trisphosphate receptor, type 3, also known as ITPR3, is a protein which in humans is encoded by the ITPR3 gene. The protein encoded by this gene is both a receptor for inositol triphosphate and a calcium channel.

<span class="mw-page-title-main">Ryanodine receptor 3</span> Transport protein and coding gene in humans

Ryanodine receptor 3 is one of a class of ryanodine receptors and a protein that in humans is encoded by the RYR3 gene. The protein encoded by this gene is both a calcium channel and a receptor for the plant alkaloid ryanodine. RYR3 and RYR1 control the resting calcium ion concentration in skeletal muscle.

The ryanodine-inositol 1,4,5-triphosphate receptor Ca2+ channel (RIR-CaC) family includes Ryanodine receptors and Inositol trisphosphate receptors. Members of this family are large proteins, some exceeding 5000 amino acyl residues in length. This family belongs to the Voltage-gated ion channel (VIC) superfamily. Ry receptors occur primarily in muscle cell sarcoplasmic reticular (SR) membranes, and IP3 receptors occur primarily in brain cell endoplasmic reticular (ER) membranes where they effect release of Ca2+ into the cytoplasm upon activation (opening) of the channel. They are redox sensors, possibly providing a partial explanation for how they control cytoplasmic Ca2+. Ry receptors have been identified in heart mitochondria where they provide the main pathway for Ca2+ entry. Sun et al. (2011) have demonstrated oxygen-coupled redox regulation of the skeletal muscle ryanodine receptor-Ca2+ release channel (RyR1;TC# 1.A.3.1.2) by NADPH oxidase 4.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000123104 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000030287 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. "Entrez Gene: inositol 1".
  6. Yamamoto-Hino M, Sugiyama T, Hikichi K, et al. (1994). "Cloning and characterization of human type 2 and type 3 inositol 1,4,5-trisphosphate receptors". Recept. Channels. 2 (1): 9–22. PMID   8081734.

Further reading