Isotopes of calcium

Last updated
Isotopes of calcium  (20Ca)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
40Ca96.9% stable
41Ca trace 9.94×104 y ε 41K
42Ca0.647%stable
43Ca0.135%stable
44Ca2.09%stable
45Ca synth 163 d β 45Sc
46Ca0.004%stable
47Casynth4.5 dβ 47Sc
48Ca 0.187%6.4×1019 y ββ 48Ti
Standard atomic weight Ar°(Ca)

Calcium (20Ca) has 26 known isotopes, ranging from 35Ca to 60Ca. There are five stable isotopes (40Ca, 42Ca, 43Ca, 44Ca and 46Ca), plus one isotope (48Ca) with such a long half-life that for all practical purposes it can be considered stable. The most abundant isotope, 40Ca, as well as the rare 46Ca, are theoretically unstable on energetic grounds, but their decay has not been observed. Calcium also has a cosmogenic isotope, radioactive 41Ca, which has a half-life of 99,400 years. Unlike cosmogenic isotopes that are produced in the atmosphere, 41Ca is produced by neutron activation of 40Ca. Most of its production is in the upper metre of the soil column, where the cosmogenic neutron flux is still sufficiently strong. 41Ca has received much attention in stellar studies because it decays to 41K, a critical indicator of solar system anomalies. The most stable artificial radioisotopes are 45Ca with a half-life of 163 days and 47Ca with a half-life of 4.5 days. All other calcium isotopes have half-lives measured in minutes or less. [4]

Contents

40Ca comprises about 97% of naturally occurring calcium. 40Ca is also one of the daughter products of 40K decay, along with 40Ar. While K–Ar dating has been used extensively in the geological sciences, the prevalence of 40Ca in nature has impeded its use in dating. Techniques using mass spectrometry and a double spike isotope dilution have been used for K–Ca age dating.

List of isotopes

Nuclide
Z N Isotopic mass (Da) [5]
[n 1]
Half-life [1]
[n 2]
Decay
mode
[1]
[n 3]
Daughter
isotope

[n 4]
Spin and
parity [1]
[n 5] [n 6]
Natural abundance (mole fraction)
Normal proportion [1] Range of variation
35Ca201535.00557(22)#25.7(2) ms β+, p (95.8%)34Ar1/2+#
β+, 2p (4.2%)33Cl
β+ (rare)35K
36Ca201635.993074(43)100.9(13) msβ+, p (51.2%)35Ar0+
β+ (48.8%)36K
37Ca201736.98589785(68)181.0(9) msβ+, p (76.8%)36Ar3/2+
β+ (23.2%)37K
38Ca201837.97631922(21)443.70(25) msβ+38K0+
39Ca201938.97071081(64)860.3(8) msβ+39K3/2+
40Ca [n 7] 202039.962590850(22) Observationally stable [n 8] 0+0.9694(16)0.96933–0.96947
41Ca202140.96227791(15)9.94(15)×104 y EC 41K7/2−Trace [n 9]
42Ca202241.95861778(16)Stable0+0.00647(23)0.00646–0.00648
43Ca202342.95876638(24)Stable7/2−0.00135(10)0.00135–0.00135
44Ca202443.95548149(35)Stable0+0.0209(11)0.02082–0.02092
45Ca202544.95618627(39)162.61(9) dβ45Sc7/2−
46Ca202645.9536877(24)Observationally stable [n 10] 0+4×10−54×10−5–4×10−5
47Ca202746.9545411(24)4.536(3) dβ47Sc7/2−
48Ca [n 11] [n 12] 202847.952522654(18)5.6(10)×1019 yββ [n 13] [n 14] 48Ti0+0.00187(21)0.00186–0.00188
49Ca202948.95566263(19)8.718(6) minβ49Sc3/2−
50Ca203049.9574992(17)13.45(5) sβ50Sc0+
51Ca203150.96099566(56)10.0(8) sβ51Sc3/2−
β, n?50Sc
52Ca203251.96321365(72)4.6(3) sβ (>98%)52Sc0+
β, n (<2%)51Sc
53Ca203352.968451(47)461(90) msβ (60%)53Sc1/2−#
β, n (40%)52Sc
54Ca203453.972989(52)90(6) msβ54Sc0+
β, n?53Sc
β, 2n?52Sc
55Ca203554.97998(17)22(2) msβ55Sc5/2−#
β, n?54Sc
β, 2n?53Sc
56Ca203655.98550(27)11(2) msβ56Sc0+
β, n?55Sc
β, 2n?54Sc
57Ca203756.99296(43)#8# ms [>620 ns]β?57Sc5/2−#
β, n?56Sc
β, 2n?55Sc
58Ca203857.99836(54)#4# ms [>620 ns]β?58Sc0+
β, n?57Sc
β, 2n?56Sc
59Ca203959.00624(64)#5# ms [>400 ns]β?59Sc5/2−#
β, n?58Sc
β, 2n?57Sc
60Ca204060.01181(75)#2# ms [>400 ns]β?60Sc0+
β, n?59Sc
β, 2n?58Sc
This table header & footer:
  1. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  2. Bold half-life  nearly stable, half-life longer than age of universe.
  3. Modes of decay:
    EC: Electron capture
    n: Neutron emission
    p: Proton emission
  4. Bold symbol as daughter  Daughter product is stable.
  5. () spin value  Indicates spin with weak assignment arguments.
  6. #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  7. Heaviest observationally stable nuclide with equal numbers of protons and neutrons
  8. Believed to undergo double electron capture to 40Ar with a half-life no less than 9.9×1021 y
  9. Cosmogenic nuclide
  10. Believed to undergo ββ decay to 46Ti
  11. Primordial radionuclide
  12. Believed to be capable of undergoing triple beta decay with very long partial half-life
  13. Lightest nuclide known to undergo double beta decay
  14. Theorized to also undergo β decay to 48Sc with a partial half-life exceeding 1.1+0.8
    −0.6
    ×1021 years [6]

Calcium-48

Around 2 g of calcium-48 Calcium-48 carbonate.png
Around 2 g of calcium-48

Calcium-48 is a doubly magic nucleus with 28 neutrons, which is unusually neutron-rich for a light primordial nucleus. It decays via double beta decay with an extremely long half-life of about 6.4×1019 years, although single beta decay is theoretically possible as well. [7] This decay can analyzed with the sd nuclear shell model, and it is more energetic (4.27  MeV) than any other double beta decay. [8] It can also be used as a precursor for neutron-rich and superheavy nuclei. [9] [10]

Calcium-60

Calcium-60 is the heaviest known isotope as of 2020. [1] First observed in 2018 at Riken alongside 59Ca and seven isotopes of other elements, [11] its existence suggests that there are additional even-N isotopes of calcium up to at least 70Ca, while 59Ca is probably the last bound isotope with odd N. [12] Earlier predictions had estimated the neutron drip line to occur at 60Ca, with 59Ca unbound. [11]

In the neutron-rich region, N = 40 becomes a magic number, so 60Ca was considered early on to be a possibly doubly magic nucleus, as is observed for the 68Ni isotone. [13] [14] However, subsequent spectroscopic measurements of the nearby nuclides 56Ca, 58Ca, and 62Ti instead predict that it should lie on the island of inversion known to exist around 64Cr. [14] [15]

Related Research Articles

<span class="mw-page-title-main">Island of stability</span> Predicted set of isotopes of relatively more stable superheavy elements

In nuclear physics, the island of stability is a predicted set of isotopes of superheavy elements that may have considerably longer half-lives than known isotopes of these elements. It is predicted to appear as an "island" in the chart of nuclides, separated from known stable and long-lived primordial radionuclides. Its theoretical existence is attributed to stabilizing effects of predicted "magic numbers" of protons and neutrons in the superheavy mass region.

<span class="mw-page-title-main">Magic number (physics)</span> Number of protons or neutrons that make a nucleus particularly stable

In nuclear physics, a magic number is a number of nucleons such that they are arranged into complete shells within the atomic nucleus. As a result, atomic nuclei with a 'magic' number of protons or neutrons are much more stable than other nuclei. The seven most widely recognized magic numbers as of 2019 are 2, 8, 20, 28, 50, 82, and 126.

<span class="mw-page-title-main">Double beta decay</span> Type of radioactive decay

In nuclear physics, double beta decay is a type of radioactive decay in which two neutrons are simultaneously transformed into two protons, or vice versa, inside an atomic nucleus. As in single beta decay, this process allows the atom to move closer to the optimal ratio of protons and neutrons. As a result of this transformation, the nucleus emits two detectable beta particles, which are electrons or positrons.

Protactinium (91Pa) has no stable isotopes. The four naturally occurring isotopes allow a standard atomic weight to be given.

Naturally occurring xenon (54Xe) consists of seven stable isotopes and two very long-lived isotopes. Double electron capture has been observed in 124Xe and double beta decay in 136Xe, which are among the longest measured half-lives of all nuclides. The isotopes 126Xe and 134Xe are also predicted to undergo double beta decay, but this has never been observed in these isotopes, so they are considered to be stable. Beyond these stable forms, 32 artificial unstable isotopes and various isomers have been studied, the longest-lived of which is 127Xe with a half-life of 36.345 days. All other isotopes have half-lives less than 12 days, most less than 20 hours. The shortest-lived isotope, 108Xe, has a half-life of 58 μs, and is the heaviest known nuclide with equal numbers of protons and neutrons. Of known isomers, the longest-lived is 131mXe with a half-life of 11.934 days. 129Xe is produced by beta decay of 129I ; 131mXe, 133Xe, 133mXe, and 135Xe are some of the fission products of both 235U and 239Pu, so are used as indicators of nuclear explosions.

There are 39 known isotopes and 17 nuclear isomers of tellurium (52Te), with atomic masses that range from 104 to 142. These are listed in the table below.

The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%). Its standard atomic weight is 87.62(1).

Naturally occurring manganese (25Mn) is composed of one stable isotope, 55Mn. 26 radioisotopes have been characterized, with the most stable being 53Mn with a half-life of 3.7 million years, 54Mn with a half-life of 312.3 days, and 52Mn with a half-life of 5.591 days. All of the remaining radioactive isotopes have half-lives that are less than 3 hours and the majority of these have half-lives that are less than a minute. This element also has 3 meta states.

Potassium has 26 known isotopes from 31
K
to 57
K
, with the exception of still-unknown 32
K
, as well as an unconfirmed report of 59
K
. Three of those isotopes occur naturally: the two stable forms 39
K
(93.3%) and 41
K
(6.7%), and a very long-lived radioisotope 40
K
(0.012%)

Argon (18Ar) has 26 known isotopes, from 29Ar to 54Ar and 1 isomer (32mAr), of which three are stable. On the Earth, 40Ar makes up 99.6% of natural argon. The longest-lived radioactive isotopes are 39Ar with a half-life of 268 years, 42Ar with a half-life of 32.9 years, and 37Ar with a half-life of 35.04 days. All other isotopes have half-lives of less than two hours, and most less than one minute. The least stable is 29Ar with a half-life of approximately 4×10−20 seconds.

Chlorine (17Cl) has 25 isotopes, ranging from 28Cl to 52Cl, and two isomers, 34mCl and 38mCl. There are two stable isotopes, 35Cl (75.77%) and 37Cl (24.23%), giving chlorine a standard atomic weight of 35.45. The longest-lived radioactive isotope is 36Cl, which has a half-life of 301,000 years. All other isotopes have half-lives under 1 hour, many less than one second. The shortest-lived are proton-unbound 29Cl and 30Cl, with half-lives less than 10 picoseconds and 30 nanoseconds, respectively; the half-life of 28Cl is unknown.

Although phosphorus (15P) has 22 isotopes from 26P to 47P, only 31P is stable; as such, phosphorus is considered a monoisotopic element. The longest-lived radioactive isotopes are 33P with a half-life of 25.34 days and 32P with a half-life of 14.268 days. All others have half-lives of under 2.5 minutes, most under a second. The least stable known isotope is 47P, with a half-life of 2 milliseconds.

Sulfur (16S) has 23 known isotopes with mass numbers ranging from 27 to 49, four of which are stable: 32S (95.02%), 33S (0.75%), 34S (4.21%), and 36S (0.02%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of five helium-4 nuclei, in the so-called alpha process of exploding type II supernovas.

Beryllium (4Be) has 11 known isotopes and 3 known isomers, but only one of these isotopes is stable and a primordial nuclide. As such, beryllium is considered a monoisotopic element. It is also a mononuclidic element, because its other isotopes have such short half-lives that none are primordial and their abundance is very low. Beryllium is unique as being the only monoisotopic element with both an even number of protons and an odd number of neutrons. There are 25 other monoisotopic elements but all have odd atomic numbers, and even numbers of neutrons.

Darmstadtium (110Ds) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 269Ds in 1994. There are 11 known radioisotopes from 267Ds to 281Ds and 2 or 3 known isomers. The longest-lived isotope is 281Ds with a half-life of 14 seconds.

Flerovium (114Fl) is a synthetic element, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first isotope to be synthesized was 289Fl in 1999. Flerovium has six known isotopes, along with the unconfirmed 290Fl, and possibly two nuclear isomers. The longest-lived isotope is 289Fl with a half-life of 1.9 seconds, but 290Fl may have a longer half-life of 19 seconds.

Oganesson (118Og) is a synthetic element created in particle accelerators, and thus a standard atomic weight cannot be given. Like all synthetic elements, it has no stable isotopes. The first and only isotope to be synthesized was 294Og in 2002 and 2005; it has a half-life of 700 microseconds.

<span class="mw-page-title-main">Calcium-48</span> Isotope of calcium

Calcium-48 is a scarce isotope of calcium containing 20 protons and 28 neutrons. It makes up 0.187% of natural calcium by mole fraction. Although it is unusually neutron-rich for such a light nucleus, its beta decay is extremely hindered, and so the only radioactive decay pathway that it has been observed to undergo is the extremely rare process of double beta decay. Its half-life is about 6.4×1019 years, so for all practical purposes it can be treated as stable. One factor contributing to this unusual stability is that 20 and 28 are both magic numbers, making 48Ca a "doubly magic" nucleus.

<span class="mw-page-title-main">Nuclear drip line</span> Atomic nuclei decay delimiter

The nuclear drip line is the boundary beyond which atomic nuclei are unbound with respect to the emission of a proton or neutron.

References

  1. 1 2 3 4 5 6 Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Calcium". CIAAW. 1983.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  5. Wang, Meng; Huang, W.J.; Kondev, F.G.; Audi, G.; Naimi, S. (2021). "The AME 2020 atomic mass evaluation (II). Tables, graphs and references*". Chinese Physics C. 45 (3): 030003. doi:10.1088/1674-1137/abddaf.
  6. Aunola, M.; Suhonen, J.; Siiskonen, T. (1999). "Shell-model study of the highly forbidden beta decay 48Ca → 48Sc". EPL . 46 (5): 577. Bibcode:1999EL.....46..577A. doi:10.1209/epl/i1999-00301-2. S2CID   250836275.
  7. Arnold, R.; et al. (NEMO-3 Collaboration) (2016). "Measurement of the double-beta decay half-life and search for the neutrinoless double-beta decay of 48Ca with the NEMO-3 detector". Physical Review D . 93 (11): 112008. arXiv: 1604.01710 . Bibcode:2016PhRvD..93k2008A. doi:10.1103/PhysRevD.93.112008.
  8. Balysh, A.; et al. (1996). "Double Beta Decay of 48Ca". Physical Review Letters. 77 (26): 5186–5189. arXiv: nucl-ex/9608001 . Bibcode:1996PhRvL..77.5186B. doi:10.1103/PhysRevLett.77.5186. PMID   10062737.
  9. Notani, M.; et al. (2002). "New neutron-rich isotopes, 34Ne, 37Na and 43Si, produced by fragmentation of a 64A MeV 48Ca beam". Physics Letters B. 542 (1–2): 49–54. Bibcode:2002PhLB..542...49N. doi:10.1016/S0370-2693(02)02337-7.
  10. Oganessian, Yu. Ts.; et al. (October 2006). "Synthesis of the isotopes of elements 118 and 116 in the 249Cf and 245Cm + 48Ca fusion reactions". Physical Review C. 74 (4): 044602. Bibcode:2006PhRvC..74d4602O. doi: 10.1103/PhysRevC.74.044602 .
  11. 1 2 Tarasov, O. B.; Ahn, D. S.; Bazin, D.; et al. (11 July 2018). "Discovery of 60Ca and Implications For the Stability of 70Ca". Physical Review Letters. 121 (2). doi: 10.1103/PhysRevLett.121.022501 .
  12. Neufcourt, Léo; Cao, Yuchen; Nazarewicz, Witold; et al. (14 February 2019). "Neutron Drip Line in the Ca Region from Bayesian Model Averaging". Physical Review Letters. 122 (6). arXiv: 1901.07632 . doi:10.1103/PhysRevLett.122.062502.
  13. Gade, A.; Janssens, R. V. F.; Weisshaar, D.; et al. (21 March 2014). "Nuclear Structure Towards N = 40 60Ca: In-Beam γ -Ray Spectroscopy of 58, 60Ti". Physical Review Letters. 112 (11). arXiv: 1402.5944 . doi:10.1103/PhysRevLett.112.112503.
  14. 1 2 Cortés, M.L.; Rodriguez, W.; Doornenbal, P.; et al. (January 2020). "Shell evolution of N = 40 isotones towards 60Ca: First spectroscopy of 62Ti". Physics Letters B. 800: 135071. arXiv: 1912.07887 . doi: 10.1016/j.physletb.2019.135071 .
  15. Chen, S.; Browne, F.; Doornenbal, P.; et al. (August 2023). "Level structures of 56, 58Ca cast doubt on a doubly magic 60Ca". Physics Letters B. 843: 138025. arXiv: 2307.07077 . doi: 10.1016/j.physletb.2023.138025 .

Further reading