Isotopes of phosphorus

Last updated
Isotopes of phosphorus  (15P)
Main isotopes Decay
abun­dance half-life (t1/2) mode pro­duct
31P100% stable
32P trace 14.269 d β 32S
33Ptrace25.35 dβ 33S
Standard atomic weight Ar°(P)

Although phosphorus (15P) has 22 isotopes from 26P to 47P, only 31P is stable; as such, phosphorus is considered a monoisotopic element. The longest-lived radioactive isotopes are 33P with a half-life of 25.34 days and 32P with a half-life of 14.268 days. [3] [4] All others have half-lives of under 2.5 minutes, most under a second. The least stable known isotope is 47P, with a half-life of 2 milliseconds.

Contents

List of isotopes

Nuclide [5]
[n 1]
Z N Isotopic mass (Da) [6]
[n 2] [n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7] [n 4]
Natural abundance (mole fraction)
Excitation energyNormal proportionRange of variation
26P [n 8] 151126.01178(21)#43.7(6) msβ+ (63.2%)26Si(3+)
β+, p (36.8%)25Al
26mP164.4(1) keV120(9) ns IT 26P
27P151226.999224(28)260(80) msβ+ (99.93%)27Si1/2+
β+, p (.07%) 26Al
28P151327.9923266(12)270.3(5) msβ+ (99.99%)28Si3+
β+, p (.0013%)27Al
β+, α (8.6×10−4%)24Mg
29P151428.9818004(4)4.142(15) sβ+29Si1/2+
30P151529.97831349(7)2.498(4) minβ+30Si1+
31P151630.9737619986(7)Stable1/2+1.0000
32P 151731.97390764(4)14.268(5) dβ32S1+ Trace
33P151832.9717257(12)25.35(11) dβ33S1/2+
34P151933.9736459(9)12.43(10) sβ34S1+
35P152034.9733141(20)47.3(8) sβ35S1/2+
36P152135.978260(14)5.6(3) sβ36S4−
37P152236.97961(4)2.31(13) sβ37S(1/2+)
38P152337.98430(8)0.64(14) sβ (87.5%)38S
β, n (12.5%)37S
39P152438.98629(12)282(24) msβ (73.2%)39S1/2+#
β, n (26.8%)38S
40P152539.99129(16)150(8) msβ (84.2%)40S(2−,3−)
β, n (15.8%)39S
41P152640.99465(13)101(5) msβ (70%)41S1/2+#
β, n (30%)40S
42P152742.00108(34)48.5(15) msβ (50%)42S
β, n (50%)41S
43P152843.00502(60)35.8(13) msβ, n (100%)42S1/2+#
β, 2n ?41S
44P152944.01122(54)#18.5(25) msβ44S
45P153045.01675(54)#24(7 (stat), 9 (sys)) ms [7] β, n (79%)44S1/2+#
β, 2n (21%)43S
46P153146.02466(75)#4# ms [>200 ns]β46S
47P [8] 153247.03190(86)#2# msβ47S
This table header & footer:
  1. mP  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    IT: Isomeric transition
    n: Neutron emission
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. Has 1 halo proton

Radioactive isotopes

Phosphorus-32

32P is a radioactive isotope of phosphorus with relative atomic mass 31.973907 and half-life of 14.26 days. 32P is a radioactive isotope of phosphorus with beta particle-emitting radiocytotoxic activity. Emitted by 32P, beta particles directly damage cellular DNA and, by ionizing intracellular water to produce several types of cytotoxic free radicals and superoxides, indirectly damage intracellular biological macromolecules, resulting in tumor cell death. [9]

Phosphorus-33

33P is an artificial radioactive element. It is produced with a low yield by the neutron bombardment of 31P (stable). The 33P has a radioactive period of 25.3 days. It is a pure β-transmitter. 33P is used as an alternative to 32P in research in molecular biology. Indeed, its longer life time and especially its less energetic β spectrum make its manipulation simpler in the laboratory. In the medical field, 33P has been used in the treatment of arterial stenosis but is no longer indicated at this time. [10]


Related Research Articles

Fluorine (9F) has 18 known isotopes ranging from 13
F
to 31
F
and two isomers. Only fluorine-19 is stable and naturally occurring in more than trace quantities; therefore, fluorine is a monoisotopic and mononuclidic element.

Lead (82Pb) has four observationally stable isotopes: 204Pb, 206Pb, 207Pb, 208Pb. Lead-204 is entirely a primordial nuclide and is not a radiogenic nuclide. The three isotopes lead-206, lead-207, and lead-208 represent the ends of three decay chains: the uranium series, the actinium series, and the thorium series, respectively; a fourth decay chain, the neptunium series, terminates with the thallium isotope 205Tl. The three series terminating in lead represent the decay chain products of long-lived primordial 238U, 235U, and 232Th. Each isotope also occurs, to some extent, as primordial isotopes that were made in supernovae, rather than radiogenically as daughter products. The fixed ratio of lead-204 to the primordial amounts of the other lead isotopes may be used as the baseline to estimate the extra amounts of radiogenic lead present in rocks as a result of decay from uranium and thorium.

Bismuth (83Bi) has 41 known isotopes, ranging from 184Bi to 224Bi. Bismuth has no stable isotopes, but does have one very long-lived isotope; thus, the standard atomic weight can be given as 208.98040(1). Although bismuth-209 is now known to be radioactive, it has classically been considered to be a stable isotope because it has a half-life of approximately 2.01×1019 years, which is more than a billion times the age of the universe. Besides 209Bi, the most stable bismuth radioisotopes are 210mBi with a half-life of 3.04 million years, 208Bi with a half-life of 368,000 years and 207Bi, with a half-life of 32.9 years, none of which occurs in nature. All other isotopes have half-lives under 1 year, most under a day. Of naturally occurring radioisotopes, the most stable is radiogenic 210Bi with a half-life of 5.012 days. 210mBi is unusual for being a nuclear isomer with a half-life multiple orders of magnitude longer than that of the ground state.

<span class="mw-page-title-main">Isotopes of thallium</span> Nuclides with atomic number of 81 but with different mass numbers

Thallium (81Tl) has 41 isotopes with atomic masses that range from 176 to 216. 203Tl and 205Tl are the only stable isotopes and 204Tl is the most stable radioisotope with a half-life of 3.78 years. 207Tl, with a half-life of 4.77 minutes, has the longest half-life of naturally occurring Tl radioisotopes. All isotopes of thallium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

There are seven stable isotopes of mercury (80Hg) with 202Hg being the most abundant (29.86%). The longest-lived radioisotopes are 194Hg with a half-life of 444 years, and 203Hg with a half-life of 46.612 days. Most of the remaining 40 radioisotopes have half-lives that are less than a day. 199Hg and 201Hg are the most often studied NMR-active nuclei, having spin quantum numbers of 1/2 and 3/2 respectively. All isotopes of mercury are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. These isotopes are predicted to undergo either alpha decay or double beta decay.

Naturally occurring platinum (78Pt) consists of five stable isotopes (192Pt, 194Pt, 195Pt, 196Pt, 198Pt) and one very long-lived (half-life 4.83×1011 years) radioisotope (190Pt). There are also 34 known synthetic radioisotopes, the longest-lived of which is 193Pt with a half-life of 50 years. All other isotopes have half-lives under a year, most under a day. All isotopes of platinum are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed. Platinum-195 is the most abundant isotope.

There are two natural isotopes of iridium (77Ir), and 37 radioisotopes, the most stable radioisotope being 192Ir with a half-life of 73.83 days, and many nuclear isomers, the most stable of which is 192m2Ir with a half-life of 241 years. All other isomers have half-lives under a year, most under a day. All isotopes of iridium are either radioactive or observationally stable, meaning that they are predicted to be radioactive but no actual decay has been observed.

Naturally occurring erbium (68Er) is composed of 6 stable isotopes, with 166Er being the most abundant. 39 radioisotopes have been characterized with between 74 and 112 neutrons, or 142 to 180 nucleons, with the most stable being 169Er with a half-life of 9.4 days, 172Er with a half-life of 49.3 hours, 160Er with a half-life of 28.58 hours, 165Er with a half-life of 10.36 hours, and 171Er with a half-life of 7.516 hours. All of the remaining radioactive isotopes have half-lives that are less than 3.5 hours, and the majority of these have half-lives that are less than 4 minutes. This element also has numerous meta states, with the most stable being 167mEr.

Naturally occurring silver (47Ag) is composed of the two stable isotopes 107Ag and 109Ag in almost equal proportions, with 107Ag being slightly more abundant. Notably, silver is the only element with all stable istopes having nuclear spins of 1/2. Thus both 107Ag and 109Ag nuclei produce narrow lines in nuclear magnetic resonance spectra.

Bromine (35Br) has two stable isotopes, 79Br and 81Br, and 32 known radioisotopes, the most stable of which is 77Br, with a half-life of 57.036 hours.

Calcium (20Ca) has 26 known isotopes, ranging from 35Ca to 60Ca. There are five stable isotopes, plus one isotope (48Ca) with such a long half-life that for all practical purposes it can be considered stable. The most abundant isotope, 40Ca, as well as the rare 46Ca, are theoretically unstable on energetic grounds, but their decay has not been observed. Calcium also has a cosmogenic isotope, radioactive 41Ca, which has a half-life of 99,400 years. Unlike cosmogenic isotopes that are produced in the atmosphere, 41Ca is produced by neutron activation of 40Ca. Most of its production is in the upper metre of the soil column, where the cosmogenic neutron flux is still sufficiently strong. 41Ca has received much attention in stellar studies because it decays to 41K, a critical indicator of solar system anomalies. The most stable artificial radioisotopes are 45Ca with a half-life of 163 days and 47Ca with a half-life of 4.5 days. All other calcium isotopes have half-lives measured in minutes or less.

Potassium has 26 known isotopes from 31
K
to 57
K
, with the exception of still-unknown 32
K
, as well as an unconfirmed report of 59
K
. Three of those isotopes occur naturally: the two stable forms 39
K
(93.3%) and 41
K
(6.7%), and a very long-lived radioisotope 40
K
(0.012%)

Argon (18Ar) has 26 known isotopes, from 29Ar to 54Ar and 1 isomer (32mAr), of which three are stable. On the Earth, 40Ar makes up 99.6% of natural argon. The longest-lived radioactive isotopes are 39Ar with a half-life of 268 years, 42Ar with a half-life of 32.9 years, and 37Ar with a half-life of 35.04 days. All other isotopes have half-lives of less than two hours, and most less than one minute. The least stable is 29Ar with a half-life of approximately 4×10−20 seconds.

Chlorine (17Cl) has 25 isotopes, ranging from 28Cl to 52Cl, and two isomers, 34mCl and 38mCl. There are two stable isotopes, 35Cl (75.77%) and 37Cl (24.23%), giving chlorine a standard atomic weight of 35.45. The longest-lived radioactive isotope is 36Cl, which has a half-life of 301,000 years. All other isotopes have half-lives under 1 hour, many less than one second. The shortest-lived are proton-unbound 29Cl and 30Cl, with half-lives less than 10 picoseconds and 30 nanoseconds, respectively; the half-life of 28Cl is unknown.

Sulfur (16S) has 23 known isotopes with mass numbers ranging from 27 to 49, four of which are stable: 32S (95.02%), 33S (0.75%), 34S (4.21%), and 36S (0.02%). The preponderance of sulfur-32 is explained by its production from carbon-12 plus successive fusion capture of five helium-4 nuclei, in the so-called alpha process of exploding type II supernovas.

Aluminium or aluminum (13Al) has 22 known isotopes from 22Al to 43Al and 4 known isomers. Only 27Al (stable isotope) and 26Al (radioactive isotope, t1/2 = 7.2×105 y) occur naturally, however 27Al comprises nearly all natural aluminium. Other than 26Al, all radioisotopes have half-lives under 7 minutes, most under a second. The standard atomic weight is 26.9815385(7). 26Al is produced from argon in the atmosphere by spallation caused by cosmic-ray protons. Aluminium isotopes have found practical application in dating marine sediments, manganese nodules, glacial ice, quartz in rock exposures, and meteorites. The ratio of 26Al to 10Be has been used to study the role of sediment transport, deposition, and storage, as well as burial times, and erosion, on 105 to 106 year time scales. 26Al has also played a significant role in the study of meteorites.

There are 20 isotopes of sodium (11Na), ranging from 17
Na
to 39
Na
, and two isomers. 23
Na
is the only stable isotope. It is considered a monoisotopic element and it has a standard atomic weight of 22.98976928(2). Sodium has two radioactive cosmogenic isotopes. With the exception of those two isotopes, all other isotopes have half-lives under a minute, most under a second. The shortest-lived is the unbound 18
Na
, with a half-life of 1.3(4)×10−21 seconds.

<span class="mw-page-title-main">Isotopes of magnesium</span> Nuclides with atomic number of 12 but with different mass numbers

Magnesium (12Mg) naturally occurs in three stable isotopes: 24
Mg
, 25
Mg
, and 26
Mg
. There are 19 radioisotopes that have been discovered, ranging from 18
Mg
to 40
Mg
. The longest-lived radioisotope is 28
Mg
with a half-life of 20.915(9) h. The lighter isotopes mostly decay to isotopes of sodium while the heavier isotopes decay to isotopes of aluminium. The shortest-lived is proton-unbound 18
Mg
with a half-life of 4.0(3.4) zeptoseconds.

Natural nitrogen (7N) consists of two stable isotopes: the vast majority (99.6%) of naturally occurring nitrogen is nitrogen-14, with the remainder being nitrogen-15. Thirteen radioisotopes are also known, with atomic masses ranging from 9 to 23, along with three nuclear isomers. All of these radioisotopes are short-lived, the longest-lived being nitrogen-13 with a half-life of 9.965(4) min. All of the others have half-lives below 7.15 seconds, with most of these being below 620 milliseconds. Most of the isotopes with atomic mass numbers below 14 decay to isotopes of carbon, while most of the isotopes with masses above 15 decay to isotopes of oxygen. The shortest-lived known isotope is nitrogen-10, with a half-life of 143(36) yoctoseconds, though the half-life of nitrogen-9 has not been measured exactly.

An alpha nuclide is a nuclide that consists of an integer number of alpha particles. Alpha nuclides have equal, even numbers of protons and neutrons; they are important in stellar nucleosynthesis since the energetic environment within stars is amenable to fusion of alpha particles into heavier nuclei. Stable alpha nuclides, and stable decay products of radioactive alpha nuclides, are some of the most common metals in the universe.

References

  1. "Standard Atomic Weights: Phosphorus". CIAAW. 2013.
  2. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  3. PubChem. "Phosphorus Radioisotopes". pubchem.ncbi.nlm.nih.gov. Retrieved 2022-04-08.
  4. "phosphorus-33 atom (CHEBI:37973)". www.ebi.ac.uk. Retrieved 2022-04-08.
  5. Half-life, decay mode, nuclear spin, and isotopic composition is sourced in:
    Audi, G.; Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S. (2017). "The NUBASE2016 evaluation of nuclear properties" (PDF). Chinese Physics C. 41 (3): 030001. Bibcode:2017ChPhC..41c0001A. doi:10.1088/1674-1137/41/3/030001.
  6. Wang, M.; Audi, G.; Kondev, F. G.; Huang, W. J.; Naimi, S.; Xu, X. (2017). "The AME2016 atomic mass evaluation (II). Tables, graphs, and references" (PDF). Chinese Physics C. 41 (3): 030003-1–030003-442. doi:10.1088/1674-1137/41/3/030003.
  7. Crawford, H. L.; Tripathi, V.; Allmond, J. M.; et al. (2022). "Crossing N = 28 toward the neutron drip line: first measurement of half-lives at FRIB". Physical Review Letters. 129 (212501): 212501. Bibcode:2022PhRvL.129u2501C. doi: 10.1103/PhysRevLett.129.212501 . PMID   36461950. S2CID   253600995.
  8. Neufcourt, L.; Cao, Y.; Nazarewicz, W.; Olsen, E.; Viens, F. (2019). "Neutron drip line in the Ca region from Bayesian model averaging". Physical Review Letters. 122 (6): 062502–1–062502–6. arXiv: 1901.07632 . Bibcode:2019PhRvL.122f2502N. doi:10.1103/PhysRevLett.122.062502. PMID   30822058. S2CID   73508148.
  9. "Phosphorus-32".
  10. "Phosphorus 33 (P-33)".