Isotopes of cerium

Last updated
Isotopes of cerium  (58Ce)
Main isotopes [1] Decay
abun­dance half-life (t1/2) mode pro­duct
134Ce synth 3.16 d ε 134La
136Ce0.186% stable
138Ce0.251%stable
139Cesynth137.640 dε 139La
140Ce88.4%stable
141Cesynth32.501 d β 141Pr
142Ce11.1%stable
143Cesynth33.039 hβ 143Pr
144Cesynth284.893 dβ 144Pr
Standard atomic weight Ar°(Ce)

Naturally occurring cerium (58Ce) is composed of 4 stable isotopes: 136Ce, 138Ce, 140Ce, and 142Ce, with 140Ce being the most abundant (88.48% natural abundance) and the only one theoretically stable; 136Ce, 138Ce, and 142Ce are predicted to undergo double beta decay but this process has never been observed. There are 35 radioisotopes that have been characterized, with the most stable being 144Ce, with a half-life of 284.893 days; 139Ce, with a half-life of 137.640 days and 141Ce, with a half-life of 32.501 days. All of the remaining radioactive isotopes have half-lives that are less than 4 days and the majority of these have half-lives that are less than 10 minutes. This element also has 10 meta states.

The isotopes of cerium range in atomic weight from 119 u (119Ce) to 157 u (157Ce).

List of isotopes

Nuclide
[n 1]
Z N Isotopic mass (Da)
[n 2] [n 3]
Half-life
[n 4]
Decay
mode

[n 5]
Daughter
isotope

[n 6]
Spin and
parity
[n 7] [n 4]
Natural abundance (mole fraction)
Excitation energyNormal proportionRange of variation
119Ce5861118.95276(64)#200# ms β+ 119La5/2+#
120Ce5862119.94664(75)#250# msβ+120La0+
121Ce5863120.94342(54)#1.1(1) sβ+121La(5/2)(+#)
122Ce5864121.93791(43)#2# sβ+122La0+
β+, p 121Ba
123Ce5865122.93540(32)#3.8(2) sβ+123La(5/2)(+#)
β+, p122Ba
124Ce5866123.93041(32)#9.1(12) sβ+124La0+
125Ce5867124.92844(21)#9.3(3) sβ+125La(7/2−)
β+, p124Ba
126Ce5868125.92397(3)51.0(3) sβ+126La0+
127Ce5869126.92273(6)29(2) sβ+127La5/2+#
128Ce5870127.91891(3)3.93(2) minβ+128La0+
129Ce5871128.91810(3)3.5(3) minβ+129La(5/2+)
130Ce5872129.91474(3)22.9(5) minβ+130La0+
130mCe2453.6(3) keV100(8) ns(7−)
131Ce5873130.91442(4)10.2(3) minβ+131La(7/2+)
131mCe61.8(1) keV5.0(10) minβ+131La(1/2+)
132Ce5874131.911460(22)3.51(11) hβ+132La0+
132mCe2340.8(5) keV9.4(3) ms IT 132Ce(8−)
133Ce5875132.911515(18)97(4) minβ+133La1/2+
133mCe37.1(8) keV4.9(4) dβ+133La9/2−
134Ce5876133.908925(22)3.16(4) d EC 134La0+
135Ce5877134.909151(12)17.7(3) hβ+135La1/2(+)
135mCe445.8(2) keV20(1) sIT135Ce(11/2−)
136Ce5878135.907172(14) Observationally Stable [n 8] 0+0.00185(2)0.00185–0.00186
136mCe3095.5(4) keV2.2(2) μs10+
137Ce5879136.907806(14)9.0(3) hβ+137La3/2+
137mCe254.29(5) keV34.4(3) hIT (99.22%)137Ce11/2−
β+ (.779%)137La
138Ce5880137.905991(11)Observationally Stable [n 9] 0+0.00251(2)0.00251–0.00254
138mCe2129.17(12) keV8.65(20) msIT138Ce7-
139Ce5881138.906653(8)137.641(20) dEC139La3/2+
139mCe754.24(8) keV56.54(13) sIT139Ce11/2−
140Ce [n 10] 5882139.9054387(26)Stable0+0.88450(51)0.88446–0.88449
140mCe2107.85(3) keV7.3(15) μs6+
141Ce [n 10] 5883140.9082763(26)32.508(13) dβ141Pr7/2−
142Ce [n 10] 5884141.909244(3)Observationally Stable [n 11] 0+0.11114(51)0.11114–0.11114
143Ce [n 10] 5885142.912386(3)33.039(6) hβ143Pr3/2−
144Ce [n 10] 5886143.913647(4)284.91(5) dβ144mPr0+
145Ce5887144.91723(4)3.01(6) minβ145Pr(3/2−)
146Ce5888145.91876(7)13.52(13) minβ146Pr0+
147Ce5889146.92267(3)56.4(10) sβ147Pr(5/2−)
148Ce5890147.92443(3)56(1) sβ148Pr0+
149Ce5891148.9284(1)5.3(2) sβ149Pr(3/2−)#
150Ce5892149.93041(5)4.0(6) sβ150Pr0+
151Ce5893150.93398(11)1.02(6) sβ151Pr3/2−#
152Ce5894151.93654(21)#1.4(2) sβ152Pr0+
153Ce5895152.94058(43)#500# ms [>300 ns]β153Pr3/2−#
154Ce5896153.94342(54)#300# ms [>300 ns]β154Pr0+
155Ce5897154.94804(64)#200# ms [>300 ns]β155Pr5/2−#
156Ce5898155.95126(64)#150# msβ156Pr0+
157Ce5899156.95634(75)#50# msβ157Pr7/2+#
This table header & footer:
  1. mCe  Excited nuclear isomer.
  2. ()  Uncertainty (1σ) is given in concise form in parentheses after the corresponding last digits.
  3. #  Atomic mass marked #: value and uncertainty derived not from purely experimental data, but at least partly from trends from the Mass Surface (TMS).
  4. 1 2 #  Values marked # are not purely derived from experimental data, but at least partly from trends of neighboring nuclides (TNN).
  5. Modes of decay:
    EC: Electron capture
    IT: Isomeric transition
    p: Proton emission
  6. Bold symbol as daughter  Daughter product is stable.
  7. () spin value  Indicates spin with weak assignment arguments.
  8. Theorized to undergo β+β+ decay to 136Ba with a half-life over 38×1015 years
  9. Theorized to undergo β+β+ decay to 138Ba with a half-life over 150×1012 years
  10. 1 2 3 4 5 Fission product
  11. Theorized to undergo ββ decay to 142Nd or α decay to 138Ba with a half-life over 2.9×1018 years [4] [5]

Related Research Articles

Francium (87Fr) has no stable isotopes. A standard atomic weight cannot be given. Its most stable isotope is 223Fr with a half-life of 22 minutes, occurring in trace quantities in nature as an intermediate decay product of 235U.

Naturally occurring tungsten (74W) consists of five isotopes. Four are considered stable (182W, 183W, 184W, and 186W) and one is slightly radioactive, 180W, with an extremely long half-life of 1.8 ± 0.2 exayears (1018 years). On average, two alpha decays of 180W occur per gram of natural tungsten per year, so for most practical purposes, 180W can be considered stable. Theoretically, all five can decay into isotopes of element 72 (hafnium) by alpha emission, but only 180W has been observed to do so. The other naturally occurring isotopes have not been observed to decay (they are observationally stable), and lower bounds for their half-lives have been established:

Natural hafnium (72Hf) consists of five observationally stable isotopes (176Hf, 177Hf, 178Hf, 179Hf, and 180Hf) and one very long-lived radioisotope, 174Hf, with a half-life of 7.0×1016 years. In addition, there are 34 known synthetic radioisotopes, the most stable of which is 182Hf with a half-life of 8.9×106 years. This extinct radionuclide is used in hafnium–tungsten dating to study the chronology of planetary differentiation.

Natural holmium (67Ho) contains one observationally stable isotope, 165Ho. The below table lists 36 isotopes spanning 140Ho through 175Ho as well as 33 nuclear isomers. Among the known synthetic radioactive isotopes; the most stable one is 163Ho, with a half-life of 4,570 years. All other radioisotopes have half-lives not greater than 1.117 days in their ground states, and most have half-lives under 3 hours.

Naturally occurring dysprosium (66Dy) is composed of 7 stable isotopes, 156Dy, 158Dy, 160Dy, 161Dy, 162Dy, 163Dy and 164Dy, with 164Dy being the most abundant. Twenty-nine radioisotopes have been characterized, with the most stable being 154Dy with a half-life of 1.4 million years, 159Dy with a half-life of 144.4 days, and 166Dy with a half-life of 81.6 hours. All of the remaining radioactive isotopes have half-lives that are less than 10 hours, and the majority of these have half-lives that are less than 30 seconds. This element also has 12 meta states, with the most stable being 165mDy, 147mDy and 145mDy.

Naturally occurring terbium (65Tb) is composed of one stable isotope, 159Tb. Thirty-seven radioisotopes have been characterized, with the most stable being 158Tb with a half-life of 180 years, 157Tb with a half-life of 71 years, and 160Tb with a half-life of 72.3 days. All of the remaining radioactive isotopes have half-lives that are less than 6.907 days, and the majority of these have half-lives that are less than 24 seconds. This element also has 27 meta states, with the most stable being 156m1Tb, 154m2Tb and 154m1Tb.

Naturally occurring gadolinium (64Gd) is composed of 6 stable isotopes, 154Gd, 155Gd, 156Gd, 157Gd, 158Gd and 160Gd, and 1 radioisotope, 152Gd, with 158Gd being the most abundant (24.84% natural abundance). The predicted double beta decay of 160Gd has never been observed; only a lower limit on its half-life of more than 1.3×1021 years has been set experimentally.

Promethium (61Pm) is an artificial element, except in trace quantities as a product of spontaneous fission of 238U and 235U and alpha decay of 151Eu, and thus a standard atomic weight cannot be given. Like all artificial elements, it has no stable isotopes. It was first synthesized in 1945.

Naturally occurring praseodymium (59Pr) is composed of one stable isotope, 141Pr. Thirty-eight radioisotopes have been characterized with the most stable being 143Pr, with a half-life of 13.57 days and 142Pr, with a half-life of 19.12 hours. All of the remaining radioactive isotopes have half-lives that are less than 5.985 hours and the majority of these have half-lives that are less than 33 seconds. This element also has 15 meta states with the most stable being 138mPr, 142mPr and 134mPr.

<span class="mw-page-title-main">Isotopes of lanthanum</span> Nuclides with atomic number of 57 but with different mass numbers

Naturally occurring lanthanum (57La) is composed of one stable (139La) and one radioactive (138La) isotope, with the stable isotope, 139La, being the most abundant (99.91% natural abundance). There are 39 radioisotopes that have been characterized, with the most stable being 138La, with a half-life of 1.02×1011 years; 137La, with a half-life of 60,000 years and 140La, with a half-life of 1.6781 days. The remaining radioactive isotopes have half-lives that are less than a day and the majority of these have half-lives that are less than 1 minute. This element also has 12 nuclear isomers, the longest-lived of which is 132mLa, with a half-life of 24.3 minutes. Lighter isotopes mostly decay to isotopes of barium and heavy ones mostly decay to isotopes of cerium. 138La can decay to both.

Antimony (51Sb) occurs in two stable isotopes, 121Sb and 123Sb. There are 35 artificial radioactive isotopes, the longest-lived of which are 125Sb, with a half-life of 2.75856 years; 124Sb, with a half-life of 60.2 days; and 126Sb, with a half-life of 12.35 days. All other isotopes have half-lives less than 4 days, most less than an hour.

Indium (49In) consists of two primordial nuclides, with the most common (~ 95.7%) nuclide (115In) being measurably though weakly radioactive. Its spin-forbidden decay has a half-life of 4.41×1014 years, much longer than the currently accepted age of the Universe.

Naturally occurring cadmium (48Cd) is composed of 8 isotopes. For two of them, natural radioactivity was observed, and three others are predicted to be radioactive but their decays have not been observed, due to extremely long half-lives. The two natural radioactive isotopes are 113Cd (beta decay, half-life is 8.04 × 1015 years) and 116Cd (two-neutrino double beta decay, half-life is 2.8 × 1019 years). The other three are 106Cd, 108Cd (double electron capture), and 114Cd (double beta decay); only lower limits on their half-life times have been set. Three isotopes—110Cd, 111Cd, and 112Cd—are theoretically stable. Among the isotopes absent in natural cadmium, the most long-lived are 109Cd with a half-life of 462.6 days, and 115Cd with a half-life of 53.46 hours. All of the remaining radioactive isotopes have half-lives that are less than 2.5 hours and the majority of these have half-lives that are less than 5 minutes. This element also has 12 known meta states, with the most stable being 113mCd (t1/2 14.1 years), 115mCd (t1/2 44.6 days) and 117mCd (t1/2 3.36 hours).

Natural palladium (46Pd) is composed of six stable isotopes, 102Pd, 104Pd, 105Pd, 106Pd, 108Pd, and 110Pd, although 102Pd and 110Pd are theoretically unstable. The most stable radioisotopes are 107Pd with a half-life of 6.5 million years, 103Pd with a half-life of 17 days, and 100Pd with a half-life of 3.63 days. Twenty-three other radioisotopes have been characterized with atomic weights ranging from 90.949 u (91Pd) to 128.96 u (129Pd). Most of these have half-lives that are less than a half an hour except 101Pd, 109Pd, and 112Pd.

Naturally occurring rhodium (45Rh) is composed of only one stable isotope, 103Rh. The most stable radioisotopes are 101Rh with a half-life of 3.3 years, 102Rh with a half-life of 207 days, and 99Rh with a half-life of 16.1 days. Thirty other radioisotopes have been characterized with atomic weights ranging from 88.949 u (89Rh) to 121.943 u (122Rh). Most of these have half-lives that are less than an hour except 100Rh and 105Rh. There are also numerous meta states with the most stable being 102mRh (0.141 MeV) with a half-life of about 3.7 years and 101mRh (0.157 MeV) with a half-life of 4.34 days.

The alkaline earth metal strontium (38Sr) has four stable, naturally occurring isotopes: 84Sr (0.56%), 86Sr (9.86%), 87Sr (7.0%) and 88Sr (82.58%). Its standard atomic weight is 87.62(1).

Naturally occurring zinc (30Zn) is composed of the 5 stable isotopes 64Zn, 66Zn, 67Zn, 68Zn, and 70Zn with 64Zn being the most abundant. Twenty-eight radioisotopes have been characterised with the most stable being 65Zn with a half-life of 244.26 days, and then 72Zn with a half-life of 46.5 hours. All of the remaining radioactive isotopes have half-lives that are less than 14 hours and the majority of these have half-lives that are less than 1 second. This element also has 10 meta states.

Copper (29Cu) has two stable isotopes, 63Cu and 65Cu, along with 28 radioisotopes. The most stable radioisotope is 67Cu with a half-life of 61.83 hours. Most of the others have half-lives under a minute. Unstable copper isotopes with atomic masses below 63 tend to undergo β+ decay, while isotopes with atomic masses above 65 tend to undergo β decay. 64Cu decays by both β+ and β.

Naturally occurring chromium (24Cr) is composed of four stable isotopes; 50Cr, 52Cr, 53Cr, and 54Cr with 52Cr being the most abundant (83.789% natural abundance). 50Cr is suspected of decaying by β+β+ to 50Ti with a half-life of (more than) 1.8×1017 years. Twenty-two radioisotopes, all of which are entirely synthetic, have been characterized, the most stable being 51Cr with a half-life of 27.7 days. All of the remaining radioactive isotopes have half-lives that are less than 24 hours and the majority of these have half-lives that are less than 1 minute. This element also has two meta states, 45mCr, the more stable one, and 59mCr, the least stable isotope or isomer.

Naturally occurring scandium (21Sc) is composed of one stable isotope, 45Sc. Twenty-five radioisotopes have been characterized, with the most stable being 46Sc with a half-life of 83.8 days, 47Sc with a half-life of 3.35 days, and 48Sc with a half-life of 43.7 hours and 44Sc with a half-life of 3.97 hours. All the remaining isotopes have half-lives that are less than four hours, and the majority of these have half-lives that are less than two minutes, the least stable being proton unbound 39Sc with a half-life shorter than 300 nanoseconds. This element also has 13 meta states with the most stable being 44m2Sc.

References

  1. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 030001. doi:10.1088/1674-1137/abddae.
  2. "Standard Atomic Weights: Cerium". CIAAW. 1995.
  3. Prohaska, Thomas; Irrgeher, Johanna; Benefield, Jacqueline; Böhlke, John K.; Chesson, Lesley A.; Coplen, Tyler B.; Ding, Tiping; Dunn, Philip J. H.; Gröning, Manfred; Holden, Norman E.; Meijer, Harro A. J. (2022-05-04). "Standard atomic weights of the elements 2021 (IUPAC Technical Report)". Pure and Applied Chemistry. doi:10.1515/pac-2019-0603. ISSN   1365-3075.
  4. Kondev, F. G.; Wang, M.; Huang, W. J.; Naimi, S.; Audi, G. (2021). "The NUBASE2020 evaluation of nuclear properties" (PDF). Chinese Physics C. 45 (3): 98. doi:10.1088/1674-1137/abddae.
  5. Belli, P.; Bernabei, R.; Danevich, F. A.; Incicchitti, A.; Tretyak, V. I. (2019). "Experimental searches for rare alpha and beta decays". European Physical Journal A . 55 (140): 4–6. arXiv: 1908.11458 . Bibcode:2019EPJA...55..140B. doi:10.1140/epja/i2019-12823-2. S2CID   254103706.