1-Ethyl-3-methylimidazolium chloride

Last updated • a couple of secsFrom Wikipedia, The Free Encyclopedia
1-Ethyl-3-methylimidazolium chloride
1-Ethyl-3-methylimidazoliumchloride Structural Formula V.1.svg
1-Ethyl-3-methylimidazolium-chloride-3D-balls.png
Names
Preferred IUPAC name
3-Ethyl-1-methyl-3H-imidazol-1-ium chloride
Other names
[EMIM]Cl
Identifiers
3D model (JSmol)
ChEBI
ChemSpider
ECHA InfoCard 100.129.917 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 613-739-4
PubChem CID
UNII
  • InChI=1S/C6H11N2.ClH/c1-3-8-5-4-7(2)6-8;/h4-6H,3H2,1-2H3;1H/q+1;/p-1 X mark.svgN
    Key: BMQZYMYBQZGEEY-UHFFFAOYSA-M X mark.svgN
  • CCN1C=C[N+](C)=C1.[Cl-]
  • CCn1cc[n+](c1)C.[Cl-]
Properties
C6H11ClN2
Molar mass 146.62 g·mol−1
Melting point 77 to 79 °C (171 to 174 °F; 350 to 352 K)
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H302, H315, H319
P264, P270, P280, P301+P312, P302+P352, P305+P351+P338, P321, P330, P332+P313, P337+P313, P362, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
X mark.svgN  verify  (what is  Yes check.svgYX mark.svgN ?)

1-Ethyl-3-methylimidazolium chloride or [EMIM]Cl is an ionic liquid that can be used in cellulose processing. [1] [2] The cation consists of a five-membered ring with two nitrogen and three carbon atoms, i.e. a derivative of imidazole, with ethyl and methyl groups substituted at the two nitrogen atoms. [3] Its melting point is 77–79 °C. [4]

Related Research Articles

<span class="mw-page-title-main">Amine</span> Chemical compounds and groups containing nitrogen with a lone pair (:N)

In chemistry, amines are compounds and functional groups that contain a basic nitrogen atom with a lone pair. Formally, amines are derivatives of ammonia, wherein one or more hydrogen atoms have been replaced by a substituent such as an alkyl or aryl group. Important amines include amino acids, biogenic amines, trimethylamine, and aniline. Inorganic derivatives of ammonia are also called amines, such as monochloramine.

<span class="mw-page-title-main">Ammonium</span> Chemical compound

Ammonium is a modified form of ammonia that has an extra hydrogen atom. It is a positively charged (cationic) molecular ion with the chemical formula NH+4 or [NH4]+. It is formed by the addition of a proton to ammonia. Ammonium is also a general name for positively charged (protonated) substituted amines and quaternary ammonium cations, where one or more hydrogen atoms are replaced by organic or other groups. Not only is ammonium a source of nitrogen and a key metabolite for many living organisms, but it is an integral part of the global nitrogen cycle. As such, human impact in recent years could have an effect on the biological communities that depend on it.

<span class="mw-page-title-main">Acyl group</span> Chemical group (R–C=O)

In chemistry, an acyl group is a moiety derived by the removal of one or more hydroxyl groups from an oxoacid, including inorganic acids. It contains a double-bonded oxygen atom and an organyl group or hydrogen in the case of formyl group. In organic chemistry, the acyl group is usually derived from a carboxylic acid, in which case it has the formula R−C(=O)−, where R represents an organyl group or hydrogen. Although the term is almost always applied to organic compounds, acyl groups can in principle be derived from other types of acids such as sulfonic acids and phosphonic acids. In the most common arrangement, acyl groups are attached to a larger molecular fragment, in which case the carbon and oxygen atoms are linked by a double bond.

In organic chemistry, an alkyl group is an alkane missing one hydrogen. The term alkyl is intentionally unspecific to include many possible substitutions. An acyclic alkyl has the general formula of −CnH2n+1. A cycloalkyl group is derived from a cycloalkane by removal of a hydrogen atom from a ring and has the general formula −CnH2n−1. Typically an alkyl is a part of a larger molecule. In structural formulae, the symbol R is used to designate a generic (unspecified) alkyl group. The smallest alkyl group is methyl, with the formula −CH3.

<span class="mw-page-title-main">Ionic liquid</span> Salt in the liquid state

An ionic liquid (IL) is a salt in the liquid state at ambient conditions. In some contexts, the term has been restricted to salts whose melting point is below a specific temperature, such as 100 °C (212 °F). While ordinary liquids such as water and gasoline are predominantly made of electrically neutral molecules, ionic liquids are largely made of ions. These substances are variously called liquid electrolytes, ionic melts, ionic fluids, fused salts, liquid salts, or ionic glasses.

<span class="mw-page-title-main">Triazine</span> Aromatic, heterocyclic compound

Triazines are a class of nitrogen-containing heterocycles. The parent molecules' molecular formula is C3H3N3. They exist in three isomeric forms, 1,3,5-triazines being common.

<span class="mw-page-title-main">Nitrogen mustard</span> Family of chemical compounds

Nitrogen mustards (NMs) are cytotoxic organic compounds with the bis(2-chloroethyl)amino ((ClC2H4)2NR) functional group. Although originally produced as chemical warfare agents, they were the first chemotherapeutic agents for treatment of cancer. Nitrogen mustards are nonspecific DNA alkylating agents.

<span class="mw-page-title-main">Aza-Diels–Alder reaction</span>

The Aza-Diels–Alder reaction is a modification of the Diels–Alder reaction wherein a nitrogen replaces sp2 carbon. The nitrogen atom can be part of the diene or the dienophile.

<i>N</i>,<i>N</i>-Diisopropylethylamine Chemical compound

N,N-Diisopropylethylamine, or Hünig's base, is an organic compound that is a tertiary amine. It is named after the German chemist Siegfried Hünig. It is used in organic chemistry as a non-nucleophilic base. It is commonly abbreviated as DIPEA,DIEA, or i-Pr2NEt.

<span class="mw-page-title-main">Knorr pyrrole synthesis</span> Chemical reaction

The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group α to a carbonyl group (2).

This is the list of extremely hazardous substances defined in Section 302 of the U.S. Emergency Planning and Community Right-to-Know Act. The list can be found as an appendix to 40 CFR 355. Updates as of 2006 can be seen on the Federal Register, 71 FR 47121.

<span class="mw-page-title-main">Sulfamide</span> Organosulfur compound

Sulfamide is a compound with the chemical formula SO2(NH2)2 and structure H2N−S(=O)2−NH2. Sulfamide is produced by the reaction of sulfuryl chloride with ammonia. Sulfamide was first prepared in 1838 by the French chemist Henri Victor Regnault.

<span class="mw-page-title-main">Sematilide</span> Chemical compound

Sematilide is an antiarrhythmic agent. It is the same structure as for procainamide, differing only by the placement of a mesyl sulfonamide moiety to the anilino nitrogen.

These drugs are known in the UK as controlled drug, because this is the term by which the act itself refers to them. In more general terms, however, many of these drugs are also controlled by the Medicines Act 1968, there are many other drugs which are controlled by the Medicines Act but not by the Misuse of Drugs Act, and some other drugs are controlled by other laws.

<span class="mw-page-title-main">Ethylaluminium sesquichloride</span> Chemical compound

Ethylaluminium sesquichloride, also called EASC, is an industrially important organoaluminium compound used primarily as a precursor to triethylaluminium and as a catalyst component in Ziegler–Natta type systems for olefin and diene polymerizations. Other applications include use in alkylation reactions and as a catalyst component in linear oligomerization and cyclization of unsaturated hydrocarbons. EASC is a colourless liquid, spontaneously combustible in air and reacts violently when in contact with water and many other compounds.

Electrophilic aromatic substitution (SEAr) is an organic reaction in which an atom that is attached to an aromatic system is replaced by an electrophile. Some of the most important electrophilic aromatic substitutions are aromatic nitration, aromatic halogenation, aromatic sulfonation, alkylation Friedel–Crafts reaction and acylation Friedel–Crafts reaction.

<span class="mw-page-title-main">Olympicene</span> Chemical compound

Olympicene is an organic carbon-based molecule formed of five rings, of which four are benzene rings, joined in the shape of the Olympic rings.

<span class="mw-page-title-main">Structural scheduling of synthetic cannabinoids</span>

To combat the illicit synthetic cannabinoid industry many jurisdictions have created a system to control these cannabinoids through their general structure as opposed to their specific identity. In this way new analogs are already controlled before they are even created. A large number of cannabinoids have been grouped into classes based on similarities in their chemical structure, and these classes have been widely adopted across a variety of jurisdictions.

<span class="mw-page-title-main">Trithiazyl trichloride</span> Chemical compound

Trithiazyl trichloride is the inorganic compound with the formula (NSCl)3. A white solid, it is a precursor to other sulfur nitrides, but has no commercial applications.

<span class="mw-page-title-main">Ethyl trifluoroacetate</span> Chemical compound

Ethyl trifluoroacetate is a chemical compound from the trifluoroacetate group.

References

  1. Scientists Propose a More Efficient Way to Make Ethanol, The New York Times, March 2, 2010
  2. Joseph B. Binder and Ronald T. Raines (2010). "Fermentable sugars by chemical hydrolysis of biomass" (PDF). PNAS. 107 (10): 4516–4521. doi: 10.1073/pnas.0912073107 . PMC   2842027 . PMID   20194793.
  3. 1-Ethyl-3-methylimidazolium chloride, chemexper.com
  4. MSDS