1-Fluoro-2,4-dinitrobenzene

Last updated
1-Fluoro-2,4-dinitrobenzene
1-Fluoro-2,4-dinitrobenzene.svg
1-Fluoro-2,4-dinitrobenzene-3D-spacefill.png
Names
Preferred IUPAC name
1-Fluoro-2,4-dinitrobenzene
Other names
Dinitrofluorobenzene
Sanger's reagent
Identifiers
3D model (JSmol)
AbbreviationsDNFB, FDNB
ChEBI
ChEMBL
ChemSpider
ECHA InfoCard 100.000.668 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C6H3FN2O4/c7-5-2-1-4(8(10)11)3-6(5)9(12)13/h1-3H Yes check.svgY
    Key: LOTKRQAVGJMPNV-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C6H3FN2O4/c7-5-2-1-4(8(10)11)3-6(5)9(12)13/h1-3H
    Key: LOTKRQAVGJMPNV-UHFFFAOYAZ
  • O=[N+]([O-])c1cc(ccc1F)[N+]([O-])=O
Properties
C6H3FN2O4
Molar mass 186.098 g·mol−1
Appearanceyellow crystals [1]
Density 1.4718 g·cm−3 (54 °C) [2]
Melting point 25.8 °C (78.4 °F; 298.9 K) [2]
Boiling point 296 °C (565 °F; 569 K) [2]
Hazards
GHS labelling:
GHS-pictogram-skull.svg
H301, H311, H331, H340, H350
P260, P280, P282, P315
Lethal dose or concentration (LD, LC):
50 mg/kg-1
100 mg/kg-1
Safety data sheet (SDS) [1]
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

1-Fluoro-2,4-dinitrobenzene (commonly called Sanger's reagent, dinitrofluorobenzene, DNFB or FDNB) is a chemical that reacts with the N-terminal amino acid of polypeptides. This can be helpful for sequencing proteins.

Contents

Preparation

In 1936, Gottlieb presented a synthesis in which 1-chloro-2,4-dinitrobenzene reacted with potassium fluoride (KF) in nitrobenzene: [3]

Synthesis Sanger's reagent.svg

Uses

Frederick Sanger Frederick Sanger2.jpg
Frederick Sanger

In 1945, Frederick Sanger described its use for determining the N-terminal amino acid in polypeptide chains, in particular insulin. [4] Sanger's initial results suggested that insulin was a smaller molecule than previously estimated (molecular weight 12,000), and that it consisted of four chains (two ending in glycine and two ending in phenylalanine), with the chains cross-linked by disulfide bonds. Sanger continued work on insulin, using dinitrofluorobenzene in combination with other techniques, eventually resulted in the complete sequence of insulin (consisting of only two chains, with a molecular weight of 6,000). [5]

Following Sanger's initial report of the reagent, the dinitrofluorobenzene method was widely adopted for studying proteins, until it was superseded by other reagents for terminal analysis (e.g., dansyl chloride and later aminopeptidases and carboxypeptidases) and other general methods for sequence determination (e.g., Edman degradation). [5]

Dinitrofluorobenzene reacts with the amine group in amino acids to produce dinitrophenyl-amino acids. These DNP-amino acids are moderately stable under acid hydrolysis conditions that break peptide bonds. The DNP-amino acids can then be recovered, and the identity of those amino acids can be discovered through chromatography. More recently, Sanger's reagent has also been used for the rather difficult analysis of distinguishing between the reduced and oxidized forms of glutathione and cysteine in biological systems in conjunction with HPLC. This method is robust enough that it can be performed in such complex matrices as blood or cell lysate. [6] [7]

Sanger's method of peptide end-group analysis: A derivatization of N-terminal end with Sanger's reagent (DNFB), B total acid hydrolysis of the dinitrophenyl peptide Sanger peptide end-group analysis.svg
Sanger's method of peptide end-group analysis: A derivatization of N-terminal end with Sanger's reagent (DNFB), B total acid hydrolysis of the dinitrophenyl peptide

See also

Related Research Articles

<span class="mw-page-title-main">Amino acid</span> Organic compounds containing amine and carboxylic groups

Amino acids are organic compounds that contain both amino and carboxylic acid functional groups. Although over 500 amino acids exist in nature, by far the most important are the 22 α-amino acids incorporated into proteins. Only these 22 appear in the genetic code of life.

<span class="mw-page-title-main">Protein</span> Biomolecule consisting of chains of amino acid residues

Proteins are large biomolecules and macromolecules that comprise one or more long chains of amino acid residues. Proteins perform a vast array of functions within organisms, including catalysing metabolic reactions, DNA replication, responding to stimuli, providing structure to cells and organisms, and transporting molecules from one location to another. Proteins differ from one another primarily in their sequence of amino acids, which is dictated by the nucleotide sequence of their genes, and which usually results in protein folding into a specific 3D structure that determines its activity.

<span class="mw-page-title-main">Protein primary structure</span> Linear sequence of amino acids in a peptide or protein

Protein primary structure is the linear sequence of amino acids in a peptide or protein. By convention, the primary structure of a protein is reported starting from the amino-terminal (N) end to the carboxyl-terminal (C) end. Protein biosynthesis is most commonly performed by ribosomes in cells. Peptides can also be synthesized in the laboratory. Protein primary structures can be directly sequenced, or inferred from DNA sequences.

<span class="mw-page-title-main">Cysteine</span> Proteinogenic amino acid

Cysteine is a semiessential proteinogenic amino acid with the formula HOOC−CH(−NH2)−CH2−SH. The thiol side chain in cysteine often participates in enzymatic reactions as a nucleophile. Cysteine is chiral, with only L-cysteine being found in nature.

<span class="mw-page-title-main">Frederick Sanger</span> British biochemist (1918–2013)

Frederick Sanger was a British biochemist who received the Nobel Prize in Chemistry twice.

In biochemistry, a disulfide refers to a functional group with the structure R−S−S−R′. The linkage is also called an SS-bond or sometimes a disulfide bridge and is usually derived by the coupling of two thiol groups. In biology, disulfide bridges formed between thiol groups in two cysteine residues are an important component of the secondary and tertiary structure of proteins. Persulfide usually refers to R−S−S−H compounds.

<span class="mw-page-title-main">Post-translational modification</span> Biological processes

Post-translational modification (PTM) is the covalent process of changing proteins following protein biosynthesis. PTMs may involve enzymes or occur spontaneously. Proteins are created by ribosomes translating mRNA into polypeptide chains, which may then change to form the mature protein product. PTMs are important components in cell signalling, as for example when prohormones are converted to hormones.

Native Chemical Ligation (NCL) is an important extension of the chemical ligation concept for constructing a larger polypeptide chain by the covalent condensation of two or more unprotected peptides segments. Native chemical ligation is the most effective method for synthesizing native or modified proteins of typical size.

In biochemistry, biotinylation is the process of covalently attaching biotin to a protein, nucleic acid or other molecule. Biotinylation is rapid, specific and is unlikely to disturb the natural function of the molecule due to the small size of biotin. Biotin binds to streptavidin and avidin with an extremely high affinity, fast on-rate, and high specificity, and these interactions are exploited in many areas of biotechnology to isolate biotinylated molecules of interest. Biotin-binding to streptavidin and avidin is resistant to extremes of heat, pH and proteolysis, making capture of biotinylated molecules possible in a wide variety of environments. Also, multiple biotin molecules can be conjugated to a protein of interest, which allows binding of multiple streptavidin, avidin or neutravidin protein molecules and increases the sensitivity of detection of the protein of interest. There is a large number of biotinylation reagents available that exploit the wide range of possible labelling methods. Due to the strong affinity between biotin and streptavidin, the purification of biotinylated proteins has been a widely used approach to identify protein-protein interactions and post-translational events such as ubiquitylation in molecular biology.

<span class="mw-page-title-main">Protein structure</span> Three-dimensional arrangement of atoms in an amino acid-chain molecule

Protein structure is the three-dimensional arrangement of atoms in an amino acid-chain molecule. Proteins are polymers – specifically polypeptides – formed from sequences of amino acids, which are the monomers of the polymer. A single amino acid monomer may also be called a residue, which indicates a repeating unit of a polymer. Proteins form by amino acids undergoing condensation reactions, in which the amino acids lose one water molecule per reaction in order to attach to one another with a peptide bond. By convention, a chain under 30 amino acids is often identified as a peptide, rather than a protein. To be able to perform their biological function, proteins fold into one or more specific spatial conformations driven by a number of non-covalent interactions, such as hydrogen bonding, ionic interactions, Van der Waals forces, and hydrophobic packing. To understand the functions of proteins at a molecular level, it is often necessary to determine their three-dimensional structure. This is the topic of the scientific field of structural biology, which employs techniques such as X-ray crystallography, NMR spectroscopy, cryo-electron microscopy (cryo-EM) and dual polarisation interferometry, to determine the structure of proteins.

<span class="mw-page-title-main">Protein sequencing</span> Sequencing of amino acid arrangement in a protein

Protein sequencing is the practical process of determining the amino acid sequence of all or part of a protein or peptide. This may serve to identify the protein or characterize its post-translational modifications. Typically, partial sequencing of a protein provides sufficient information to identify it with reference to databases of protein sequences derived from the conceptual translation of genes.

<span class="mw-page-title-main">Peptide synthesis</span> Production of peptides

In organic chemistry, peptide synthesis is the production of peptides, compounds where multiple amino acids are linked via amide bonds, also known as peptide bonds. Peptides are chemically synthesized by the condensation reaction of the carboxyl group of one amino acid to the amino group of another. Protecting group strategies are usually necessary to prevent undesirable side reactions with the various amino acid side chains. Chemical peptide synthesis most commonly starts at the carboxyl end of the peptide (C-terminus), and proceeds toward the amino-terminus (N-terminus). Protein biosynthesis in living organisms occurs in the opposite direction.

Affinity chromatography is a method of separating a biomolecule from a mixture, based on a highly specific macromolecular binding interaction between the biomolecule and another substance. The specific type of binding interaction depends on the biomolecule of interest; antigen and antibody, enzyme and substrate, receptor and ligand, or protein and nucleic acid binding interactions are frequently exploited for isolation of various biomolecules. Affinity chromatography is useful for its high selectivity and resolution of separation, compared to other chromatographic methods.

Cyanogen bromide is the inorganic compound with the formula (CN)Br or BrCN. It is a colorless solid that is widely used to modify biopolymers, fragment proteins and peptides, and synthesize other compounds. The compound is classified as a pseudohalogen.

<span class="mw-page-title-main">Chiral derivatizing agent</span> Reagent for converting a chemical compound to a chiral derivative

In analytical chemistry, a chiral derivatizing agent (CDA), also known as a chiral resolving reagent, is a derivatization reagent that is a chiral auxiliary used to convert a mixture of enantiomers into diastereomers in order to analyze the quantities of each enantiomer present and determine the optical purity of a sample. Analysis can be conducted by spectroscopy or by chromatography. Some analytical techniques such as HPLC and NMR, in their most commons forms, cannot distinguish enantiomers within a sample, but can distinguish diastereomers. Therefore, converting a mixture of enantiomers to a corresponding mixture of diastereomers can allow analysis. The use of chiral derivatizing agents has declined with the popularization of chiral HPLC. Besides analysis, chiral derivatization is also used for chiral resolution, the actual physical separation of the enantiomers.

Chemical ligation is the chemoselective condensation of unprotected peptide segments enabled by the formation of a non-native bond at the ligation site.

<span class="mw-page-title-main">Allysine</span> Chemical compound

Allysine is a derivative of lysine that features a formyl group in place of the terminal amine. The free amino acid does not exist, but the allysine residue does. It is produced by aerobic oxidation of lysine residues by the enzyme lysyl oxidase. The transformation is an example of a post-translational modification. The semialdehyde form exists in equilibrium with a cyclic derivative.

Bioconjugation is a chemical strategy to form a stable covalent link between two molecules, at least one of which is a biomolecule.

Hydrophobicity scales are values that define the relative hydrophobicity or hydrophilicity of amino acid residues. The more positive the value, the more hydrophobic are the amino acids located in that region of the protein. These scales are commonly used to predict the transmembrane alpha-helices of membrane proteins. When consecutively measuring amino acids of a protein, changes in value indicate attraction of specific protein regions towards the hydrophobic region inside lipid bilayer.

<span class="mw-page-title-main">4-Fluoro-7-nitrobenzofurazan</span> Fluorogenic amine labelling dye

4-Fluoro-7-nitrobenzofurazan (NBD-F) is a fluorogenic, amine labeling dye that is not fluorescent itself, but covalently reacts with secondary or primary amines to form a fluorescently labeled product. It and other fluorogenic benzofurans are used for derivitization in HPLC applications. After the fluorogenic reaction, it can be detected with an excitation wavelength of 470 nm (blue) and an emission wavelength of 530 nm (green), enabling an HPLC limit of detection of 10 fmol.

References

  1. 1 2 Oxford MSDS
  2. 1 2 3 CRC Handbook of Chemistry and Physics , 90. edition, CRC Press, Boca Raton, Florida, 2009, ISBN   978-1-4200-9084-0, Section 3, Physical Constants of Organic Compounds, p. 3-260.
  3. Billroth Gottlieb, Hans (1936). "The Replacement of Chlorine by Fluorine in Organic Compounds". J. Am. Chem. Soc. 58 (3): 532–533. doi:10.1021/ja01294a502.
  4. Sanger, F (1945). "The free amino groups of insulin". The Biochemical Journal. 39 (5): 507–15. doi:10.1042/bj0390507. PMC   1258275 . PMID   16747948.
  5. 1 2 Joseph Fruton, Proteins, Enzymes, Genes: The Interplay of Chemistry and Biology. New Haven: Yale University Press, 1999. p. 216.
  6. Dominick, Pamela K.; Cassidy, Pamela B.; Roberts, Jeanette C. (2001). "A new and versatile method for determination of thiolamines of biological importance". Journal of Chromatography B: Biomedical Sciences and Applications. 761 (1): 1–12. doi:10.1016/S0378-4347(01)00298-5. PMID   11585123.
  7. Bronowicka-Adamska, Patrycja; Zagajewski, Jacek; Czubak, Jerzy; Wróbel, Maria (2011). "RP-HPLC method for quantitative determination of cystathionine, cysteine and glutathione: An application for the study of the metabolism of cysteine in human brain". Journal of Chromatography B. 879 (21): 2005–2009. doi:10.1016/j.jchromb.2011.05.026. PMID   21665555.

Literature