1-Methylimidazole

Last updated
1-Methylimidazole
1-Methylimidazole.svg
1-Methylimidazole Ball and Stick.png
1-Methylimidazole Space Fill.png
Names
Preferred IUPAC name
1-Methyl-1H-imidazole
Other names
1-Methylimidazole
N-Methylimidazole
NMI
Identifiers
3D model (JSmol)
105197
ChEBI
ChEMBL
ChemSpider
DrugBank
ECHA InfoCard 100.009.532 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 210-484-7
2403
PubChem CID
UNII
  • InChI=1S/C4H6N2/c1-6-3-2-5-4-6/h2-4H,1H3 Yes check.svgY
    Key: MCTWTZJPVLRJOU-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C4H6N2/c1-6-3-2-5-4-6/h2-4H,1H3
    Key: MCTWTZJPVLRJOU-UHFFFAOYAU
  • n1ccn(c1)C
  • Cn1ccnc1
Properties
C4H6N2
Molar mass 82.10 g/mol
Density 1.03 g/cm3
Melting point −6 °C (21 °F; 267 K)
Boiling point 198 °C (388 °F; 471 K)
Hazards
GHS labelling:
GHS-pictogram-acid.svg GHS-pictogram-exclam.svg
Danger
H302, H312, H314
P260, P264, P270, P280, P301+P312, P301+P330+P331, P302+P352, P303+P361+P353, P304+P340, P305+P351+P338, P310, P312, P321, P322, P330, P363, P405, P501
Safety data sheet (SDS) Oxford MSDS
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

1-Methylimidazole or N-methylimidazole is an aromatic heterocyclic organic compound with the formula CH3C3H3N2. It is a colourless liquid that is used as a specialty solvent, a base, and as a precursor to some ionic liquids. It is a fundamental nitrogen heterocycle and as such mimics for various nucleoside bases as well as histidine and histamine.

Contents

Basicity

With the N-methyl group, this particular derivative of imidazole cannot tautomerize. It is slightly more basic than imidazole, as indicated by the pKa's of the conjugate acids of 7.0 and 7.4. [1] Methylation also provides a significantly lower melting point, which makes 1-methylimidazole a useful solvent.

Synthesis

1-Methylimidazole is prepared mainly by two routes industrially. The main one is acid-catalysed methylation of imidazole by methanol. The second method involves the Radziszewski reaction from glyoxal, formaldehyde, and a mixture of ammonia and methylamine. [2] [3]

(CHO)2 + CH2O + CH3NH2 + NH3 → H2C2N(NCH3)CH + 3 H2O

The compound can be synthesized on a laboratory scale by methylation of imidazole at the pyridine-like nitrogen and subsequent deprotonation. [4] Similarly, 1-methylimidazole may be synthesized by first deprotonating imidazole to form a sodium salt followed by methylation. [5] [6]

H2C2N(NH)CH + CH3I → [H2C2(NH)(NCH3)CH]I
[H2C2(NH)(NCH3)CH]I + NaOH → H2C2N(NCH3)CH + H2O + NaI

Applications

In the research laboratory, 1-methylimidazole and related derivatives have been used as mimic aspects of diverse imidazole-based biomolecules.

1-Methylimidazole is also the precursor for the synthesis of the methylimidazole monomer of pyrrole-imidazole polyamides. These polymers can selectively bind specific sequences of double-stranded DNA by intercalating in a sequence dependent manner. [7]

Ionic liquid precursor

1-Methylimidazole alkylates to form dialkyl imidazolium salts. Depending on the alkylating agent and the counteranion, various ionic liquids result, e.g. 1-butyl-3-methylimidazolium hexafluorophosphate ("BMIMPF6"): [8] [9]

MeIm IL.png

BASF has used 1-methylimidazole as a means to remove acid during their industrial-scale production of diethoxyphenylphosphine. In this biphasic acid scavenging using ionic liquids (BASIL) process, 1-methylimidazole reacts with HCl to produce 1-methylimidazolium hydrochloride, which spontaneously separates as a separate liquid phase under the reaction conditions. [8] [10]

2 MeC3N2H3 + C6H5PCl2 + 2 C2H5OH → 2 [MeC3N2H4]Cl + C6H5P(OC2H5)2

Donor properties

1-methylimidazole (NMIz) as a ligand forms octahedral ions M(NMIz)62+with M = Fe, Co, Ni, and a square-planar ion Cu(NMIz)42+. [11] 1-methylimidazole forms adducts with Lewis acids such as molybdenum perfluorobutyrate and [Rh(CO)2Cl]2. The donor properties of 1-methylimidazole have been analyzed by the ECW model yielding EB= 1.16 and CB= 4.92.

See also

Related Research Articles

<span class="mw-page-title-main">Heterocyclic compound</span> Molecule with one or more rings composed of different elements

A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and applications of organic heterocycles.

Pyrrole is a heterocyclic, aromatic, organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.

<span class="mw-page-title-main">Dicarbonyl</span> Molecule containing two adjacent C=O groups

In organic chemistry, a dicarbonyl is a molecule containing two carbonyl groups. Although this term could refer to any organic compound containing two carbonyl groups, it is used more specifically to describe molecules in which both carbonyls are in close enough proximity that their reactivity is changed, such as 1,2-, 1,3-, and 1,4-dicarbonyls. Their properties often differ from those of monocarbonyls, and so they are usually considered functional groups of their own. These compounds can have symmetrical or unsymmetrical substituents on each carbonyl, and may also be functionally symmetrical or unsymmetrical.

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

<span class="mw-page-title-main">Imidazole</span> Chemical compound

Imidazole (ImH) is an organic compound with the formula C3N2H4. It is a white or colourless solid that is soluble in water, producing a mildly alkaline solution. In chemistry, it is an aromatic heterocycle, classified as a diazole, and has non-adjacent nitrogen atoms in meta-substitution.

<span class="mw-page-title-main">Ionic liquid</span> Salt in the liquid state

An ionic liquid (IL) is a salt in the liquid state at ambient conditions. In some contexts, the term has been restricted to salts whose melting point is below a specific temperature, such as 100 °C (212 °F). While ordinary liquids such as water and gasoline are predominantly made of electrically neutral molecules, ionic liquids are largely made of ions. These substances are variously called liquid electrolytes, ionic melts, ionic fluids, fused salts, liquid salts, or ionic glasses.

<span class="mw-page-title-main">Benzimidazole</span> Chemical compound

Benzimidazole is a heterocyclic aromatic organic compound. This bicyclic compound may be viewed as fused rings of the aromatic compounds benzene and imidazole. It is a white solid that appears in form of tabular crystals.

<span class="mw-page-title-main">Acetylacetone</span> Chemical compound

Acetylacetone is an organic compound with the chemical formula CH3−C(=O)−CH2−C(=O)−CH3. It is classified as a 1,3-diketone. It exists in equilibrium with a tautomer CH3−C(=O)−CH=C(−OH)−CH3. The mixture is a colorless liquid. These tautomers interconvert so rapidly under most conditions that they are treated as a single compound in most applications. Acetylacetone is a building block for the synthesis of many coordination complexes as well as heterocyclic compounds.

Thiazole, or 1,3-thiazole, is a 5-membered heterocyclic compound that contains both sulfur and nitrogen. The term 'thiazole' also refers to a large family of derivatives. Thiazole itself is a pale yellow liquid with a pyridine-like odor and the molecular formula C3H3NS. The thiazole ring is notable as a component of the vitamin thiamine (B1).

<span class="mw-page-title-main">Knorr pyrrole synthesis</span> Chemical reaction

The Knorr pyrrole synthesis is a widely used chemical reaction that synthesizes substituted pyrroles (3). The method involves the reaction of an α-amino-ketone (1) and a compound containing an electron-withdrawing group α to a carbonyl group (2).

<span class="mw-page-title-main">1-Butyl-3-methylimidazolium hexafluorophosphate</span> Chemical compound

1-Butyl-3-methylimidazolium hexafluorophosphate, also known as BMIM-PF6, is a viscous, colourless, hydrophobic and non-water-soluble ionic liquid with a melting point of -8 °C. Together with 1-butyl-3-methylimidazolium tetrafluoroborate, BMIM-BF4, it is one of the most widely studied ionic liquids. It is known to very slowly decompose in the presence of water.

<span class="mw-page-title-main">Hexafluorophosphate</span> Anion with the chemical formula PF6–

Hexafluorophosphate is an anion with chemical formula of [PF6]. It is an octahedral species that imparts no color to its salts. [PF6] is isoelectronic with sulfur hexafluoride, SF6, and the hexafluorosilicate dianion, [SiF6]2−, and hexafluoroantimonate [SbF6]. In this anion, phosphorus has a valence of 5. Being poorly nucleophilic, hexafluorophosphate is classified as a non-coordinating anion.

The Chichibabin reaction is a method for producing 2-aminopyridine derivatives by the reaction of pyridine with sodium amide. It was reported by Aleksei Chichibabin in 1914. The following is the overall form of the general reaction:

<span class="mw-page-title-main">C4mim</span> Chemical compound

C4mim is a shorthand for the 1-n-butyl-3-methylimidazolium cation; where C4 refers to the butyl group. It is also abbreviated Bmim, and (rarely) Bumim. Salts containing this imidazole cation are ionic liquids. A common example of such is [C4mim][Cl], or 1-n-butyl-3-methylimidazolium chloride. Other examples include BMIM-PF6, [Bmim]BF4 and C4mim-FeCl4, the latter of which is a magnetic ionic liquid.

The Debus–Radziszewski imidazole synthesis is a multi-component reaction used for the synthesis of imidazoles from a 1,2-dicarbonyl, an aldehyde, and ammonia or a primary amine. The method is used commercially to produce several imidazoles. The process is an example of a multicomponent reaction.

The Minisci reaction is a named reaction in organic chemistry. It is a nucleophilic radical substitution to an electron deficient aromatic compound, most commonly the introduction of an alkyl group to a nitrogen containing heterocycle. The reaction was published in 1971 by F. Minisci. In the case of N-Heterocycles, the conditions must be acidic to ensure protonation of said heterocycle. A typical reaction is that between pyridine and pivalic acid with silver nitrate, sulfuric acid and ammonium persulfate to form 2-tert-butylpyridine. The reaction resembles Friedel-Crafts alkylation but with opposite reactivity and selectivity.

<span class="mw-page-title-main">2-Methylimidazole</span> Chemical compound

2-Methylimidazole is an organic compound that is structurally related to imidazole with the chemical formula CH3C3H2N2H. It is a white or colorless solid that is highly soluble in polar organic solvents and water. It is a precursor to a range of drugs and is a ligand in coordination chemistry.

<span class="mw-page-title-main">Transition metal NHC complex</span>

In coordination chemistry, a transition metal NHC complex is a metal complex containing one or more N-heterocyclic carbene ligands. Such compounds are the subject of much research, in part because of prospective applications in homogeneous catalysis. One such success is the second generation Grubbs catalyst.

<span class="mw-page-title-main">Distamycin</span> Chemical compound

Distamycin is a polyamide-antibiotic, which acts as a minor groove binder, binding to the small furrow of the double helix.

<span class="mw-page-title-main">Transition metal imidazole complex</span>

A transition metal imidazole complex is a coordination complex that has one or more imidazole ligands. Complexes of imidazole itself are of little practical importance. In contrast, imidazole derivatives, especially histidine, are pervasive ligands in biology where they bind metal cofactors.

References

  1. Albert, A., Heterocyclic Chemistry, 2nd ed.; 1968 Athlone Press, ISBN   0-485-11092-X
  2. Ebel, K.; Koehler, H.; Gamer, A. O. & Jäckh, R. (2002). "Imidazole and Derivatives". Ullmann's Encyclopedia of Industrial Chemistry . Weinheim: Wiley-VCH. doi:10.1002/14356007.a13_661. ISBN   978-3527306732.
  3. Bronislaw Radziszewski (1882). "Ueber die Constitution des Lophins und verwandter Verbindungen" [By the Constitution of the Lophins and related compounds]. Berichte der deutschen chemischen Gesellschaft (in German). 15 (2): 1493–1496. doi:10.1002/cber.18820150207.
  4. Gilchrist, T. L., Heterocyclic Chemistry, 2nd ed.; 1992 Longman Scientific & Technical, ISBN   0-582-06420-1
  5. Grimmett, M. R., Imidazole and Benzimidazole Synthesis; 1997 Academic Press, ISBN   0-12-303190-7
  6. Gupta, R. R., Kumar, M., Gupta, V., Heterocyclic Chemistry II: Five Membered Heterocycles; 1999 Springer, ISBN   3-540-65252-3
  7. Baird, Eldon E.; Dervan, Peter B. (1996). "Solid Phase Synthesis of Polyamides Containing Imidazole and Pyrrole Amino Acids" (PDF). Journal of the American Chemical Society. 118 (26): 6141–6. doi:10.1021/ja960720z.
  8. 1 2 Meindersma, G. Wytze; Maase, Matthias; De Haan, André B. (2007). "Ionic Liquids". Ullmann's Encyclopedia of Industrial Chemistry. Weinheim: Wiley-VCH. doi:10.1002/14356007.l14_l01. ISBN   978-3-527-30673-2.
  9. Dupont, J.; Consorti, C.; Suarez, P.; de Souza, R. (2002). "Preparation of 1-Butyl-3-methyl imidazolium-based Room Temperature Ionic Liquids". Organic Syntheses . 79: 236. doi:10.15227/orgsyn.079.023.
  10. Welton, Tom (11 November 2015). "Solvents and sustainable chemistry". Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences. 471 (2183): 20150502. Bibcode:2015RSPSA.47150502W. doi:10.1098/rspa.2015.0502. PMC   4685879 . PMID   26730217. Open Access logo PLoS transparent.svg
  11. Reedijk,R. (1969). "Pyrazoles and imidazoles as ligands. II. Coordination compounds of N-methyl imidazole with metal perchlorates and tetrafluoroborates". Inorganica Chimica Acta. 3: 517–522. doi:10.1016/S0020-1693(00)92544-1.