2,1,3-Benzothiadiazole

Last updated
2,1,3-Benzothiadiazole
2,1,3-Benzothiadiazole.svg
Names
Preferred IUPAC name
2,1,3-Benzothiadiazole
Other names
  • Piazthiole
  • Benzisothiadiazole
  • Benzo[1,2,5]thiadiazole
Identifiers
3D model (JSmol)
ChemSpider
ECHA InfoCard 100.005.442 OOjs UI icon edit-ltr-progressive.svg
EC Number
  • 205-985-2
PubChem CID
UNII
  • InChI=1S/C6H4N2S/c1-2-4-6-5(3-1)7-9-8-6/h1-4H
    Key: PDQRQJVPEFGVRK-UHFFFAOYSA-N
  • C1=CC2=NSN=C2C=C1
Properties
C6H4N2S
Molar mass 136.17 g·mol−1
Melting point 54.0 °C (129.2 °F; 327.1 K)
Boiling point 203.0 °C (397.4 °F; 476.1 K)
Related compounds
Related compounds
1,2,3-Benzothiadiazole
Hazards
GHS labelling:
GHS-pictogram-exclam.svg
Warning
H315, H319, H335
P261, P264, P271, P280, P302+P352, P304+P340, P305+P351+P338, P312, P321, P332+P313, P337+P313, P362, P403+P233, P405, P501
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).

2,1,3-Benzothiadiazole is a bicyclic molecule composed of a benzene ring that is fused to a 1,2,5-thiadiazole.

Contents

Preparation and structure

2,1,3-Benzothiadiazole has been known since the 19th century. It is readily prepared in at least 85% yield from o-phenylenediamine by reaction with two equivalents of thionyl chloride in pyridine. The by-products are sulfur dioxide and HCl. [1]

2,1,3-Benzothiadiazole synthesis balanced.png

There are a number of alternative methods used to make this heterocycle and these have been reviewed. [2] [3] The crystal structure of the compound was determined in 1951, when it had the common name piazthiol(e). [4]

Reactions

The extent of the aromaticity of the compound was examined by a study of its proton NMR spectrum and comparison with naphthalene, which allowed the conclusion that it and related oxygen and selenium heterocycles did behave as 10-electron systems in which the 2-heteroatom contributed its lone pair to the ring current, in accordance with Hückel's rule. [5]

As a result, 2,1,3-benzothiadiazole undergoes the standard chemistry of aromatic compounds, for example readily forming nitro [1] and chloro derivatives. [6] The chemistry of this heterocycle and its simple derivatives has been reviewed. [7]

Under reducing conditions, 2,1,3-benzothiadiazoles can be converted back to the 1,2-diaminobenzene compounds from which they were prepared. This can be a useful way to protect a pair of reactive amino groups while other transformations are performed in the benzene ring to which they are attached. [8]

Bromination of 2,1,3-Benzothiadiazole is commonly performed to synthesize 4,7-dibromo-2,1,3-benzothiadiazole. This derivative is extensively used as building block in the design and synthesis of larger molecules and conductive polymers via Suzuki-Miyaura cross-coupling reactions. [9]

Typical bromination conditions used in the synthesis of ,7-dibromo-2,1,3-benzothiadiazole Bromination of benzothiadiazole.svg
Typical bromination conditions used in the synthesis of ,7-dibromo-2,1,3-benzothiadiazole

Derivatives

2,1,3-Benzothiadiazole derivatives containing carbazole units have been found to be luminiscent, with high emission intensity and quantum efficiency. [10]

Different π-extended molecular systems based on 2,1,3-benzothiadiazole have been built to study fundamental structure–property relationships. [8] One example of this type of oligomer consist of extended thiophene building blocks as electron donors and 2,1,3-benzothiadiazole as electron aceptor. This oligomer was synthesized using a Sonogashira cross-coupling reaction and it showed low HOMO–LUMO gaps which could be interesting for organic semiconductor applications. [11]

Asymmetric derivatives with diphenylamine donors, cyanoacrylic acid acceptors and thiophene linkers bridged by a 2,1,3-benzothiadiazole have been designed as organic dyes with improved charge separation properties [12] when compared to classic cyanine [13] and hemicyanine [14] dyes.

Applications

2,1,3-Benzothiadiazole has been of interest as a redox-active organic component in flow batteries owing to its favourable solubility, low reduction potential and fast electrochemical kinetics. [15]

Such properties in derivatives containing this heterocycle have made it of growing interest in dyestuffs, [16] white light-emitting polymers, [8] [17] solar cells, [18] and in luminescence studies. [19]

Related Research Articles

<span class="mw-page-title-main">Aromatic compound</span> Compound containing rings with delocalized pi electrons

Aromatic compounds or arenes usually refers to organic compounds "with a chemistry typified by benzene" and "cyclically conjugated." The word "aromatic" originates from the past grouping of molecules based on odor, before their general chemical properties were understood. The current definition of aromatic compounds does not have any relation to their odor. Aromatic compounds are now defined as cyclic compounds satisfying Hückel's Rule. Aromatic compounds have the following general properties:

<span class="mw-page-title-main">Heterocyclic compound</span> Molecule with one or more rings composed of different elements

A heterocyclic compound or ring structure is a cyclic compound that has atoms of at least two different elements as members of its ring(s). Heterocyclic organic chemistry is the branch of organic chemistry dealing with the synthesis, properties, and applications of organic heterocycles.

<span class="mw-page-title-main">Organic chemistry</span> Subdiscipline of chemistry, focusing on carbon compounds

Organic chemistry is a subdiscipline within chemistry involving the scientific study of the structure, properties, and reactions of organic compounds and organic materials, i.e., matter in its various forms that contain carbon atoms. Study of structure determines their structural formula. Study of properties includes physical and chemical properties, and evaluation of chemical reactivity to understand their behavior. The study of organic reactions includes the chemical synthesis of natural products, drugs, and polymers, and study of individual organic molecules in the laboratory and via theoretical study.

Pyrrole is a heterocyclic, aromatic, organic compound, a five-membered ring with the formula C4H4NH. It is a colorless volatile liquid that darkens readily upon exposure to air. Substituted derivatives are also called pyrroles, e.g., N-methylpyrrole, C4H4NCH3. Porphobilinogen, a trisubstituted pyrrole, is the biosynthetic precursor to many natural products such as heme.

Furan is a heterocyclic organic compound, consisting of a five-membered aromatic ring with four carbon atoms and one oxygen atom. Chemical compounds containing such rings are also referred to as furans.

<span class="mw-page-title-main">Arsole</span> Chemical compound

Arsole, also called arsenole or arsacyclopentadiene, is an organoarsenic compound with the formula C4H4AsH. It is classified as a metallole and is isoelectronic to and related to pyrrole except that an arsenic atom is substituted for the nitrogen atom. Whereas the pyrrole molecule is planar, the arsole molecule is not, and the hydrogen atom bonded to arsenic extends out of the molecular plane. Arsole is only moderately aromatic, with about 40% the aromaticity of pyrrole. Arsole itself has not been reported in pure form, but several substituted analogs called arsoles exist. Arsoles and more complex arsole derivatives have similar structure and chemical properties to those of phosphole derivatives. When arsole is fused to a benzene ring, this molecule is called arsindole, or benzarsole.

Azoles are a class of five-membered heterocyclic compounds containing a nitrogen atom and at least one other non-carbon atom as part of the ring. Their names originate from the Hantzsch–Widman nomenclature. The parent compounds are aromatic and have two double bonds; there are successively reduced analogs with fewer. One, and only one, lone pair of electrons from each heteroatom in the ring is part of the aromatic bonding in an azole. Names of azoles maintain the prefix upon reduction. The numbering of ring atoms in azoles starts with the heteroatom that is not part of a double bond, and then proceeds towards the other heteroatom.

Organosulfur chemistry is the study of the properties and synthesis of organosulfur compounds, which are organic compounds that contain sulfur. They are often associated with foul odors, but many of the sweetest compounds known are organosulfur derivatives, e.g., saccharin. Nature is abound with organosulfur compounds—sulfur is vital for life. Of the 20 common amino acids, two are organosulfur compounds, and the antibiotics penicillin and sulfa drugs both contain sulfur. While sulfur-containing antibiotics save many lives, sulfur mustard is a deadly chemical warfare agent. Fossil fuels, coal, petroleum, and natural gas, which are derived from ancient organisms, necessarily contain organosulfur compounds, the removal of which is a major focus of oil refineries.

<span class="mw-page-title-main">Benzothiazole</span> Chemical compound

Benzothiazole is an aromatic heterocyclic compound with the chemical formula C
7
H
5
NS
. It is colorless, slightly viscous liquid. Although the parent compound, benzothiazole is not widely used, many of its derivatives are found in commercial products or in nature. Firefly luciferin can be considered a derivative of benzothiazole.

1,3,5-Triazine, also called s-triazine, is an organic chemical compound with the formula (HCN)3. It is a six-membered heterocyclic aromatic ring, one of several isomeric triazines. S-triazine—the "symmetric" isomer—and its derivatives are useful in a variety of applications.

<span class="mw-page-title-main">Cyclic compound</span> Molecule with a ring of bonded atoms

A cyclic compound is a term for a compound in the field of chemistry in which one or more series of atoms in the compound is connected to form a ring. Rings may vary in size from three to many atoms, and include examples where all the atoms are carbon, none of the atoms are carbon, or where both carbon and non-carbon atoms are present. Depending on the ring size, the bond order of the individual links between ring atoms, and their arrangements within the rings, carbocyclic and heterocyclic compounds may be aromatic or non-aromatic; in the latter case, they may vary from being fully saturated to having varying numbers of multiple bonds between the ring atoms. Because of the tremendous diversity allowed, in combination, by the valences of common atoms and their ability to form rings, the number of possible cyclic structures, even of small size numbers in the many billions.

<span class="mw-page-title-main">Oxazines</span> E heterocyclic organic compounds containing one oxygen and one nitrogen atom

Oxazines are heterocyclic organic compounds containing one oxygen and one nitrogen atom in a cyclohexa-1,4-diene ring. Isomers exist depending on the relative position of the heteroatoms and relative position of the double bonds.

A spiropyran is a type of organic chemical compound, known for photochromic properties that provide this molecule with the ability of being used in medical and technological areas. Spiropyrans were discovered in the early twentieth century. However, it was in the middle twenties when Fisher and Hirshbergin observed their photochromic characteristics and reversible reaction. In 1952, Fisher and co-workers announced for the first time photochromism in spiropyrans. Since then, there have been many studies on photochromic compounds that have continued up to the present.

<span class="mw-page-title-main">Oxathiazolones</span> Chemical compound

The oxathiazolones are a family of heterocyclic compounds in which the parent derivative has the molecular formula C2HNO2S and for which multiple isomers are known. The two known isomers with the highest profile in the literature are 1,3,4-oxathiazol-2-one and 1,4,2-oxathiazol-5-one.

Diketopyrrolopyrroles (DPPs) are organic dyes and pigments based on the heterocyclic dilactam 2,5-dihydropyrrolo[3,4-c]pyrrole-1,4-dione, widely used in optoelectronics. DPPs were initially used as pigments in the painting industry due to their high resistance to photodegradation. More recently, DPP derivatives have been also investigated as promising fluorescent dyes for bioimaging applications, as well as components of materials for use in organic electronics.

<span class="mw-page-title-main">Telluropyrylium</span> Chemical compound

Telluropyrylium is an aromatic heterocyclic compound consisting of a six member ring with five carbon atoms, and a positively charged tellurium atom. Derivatives of telluropyrylium are important in research of infrared dyes.

<span class="mw-page-title-main">Selenophene</span> Chemical compound

Selenophene is an unsaturated organic compound containing a five-member ring with selenium with formula C4H4Se. A colorless liquid, it is one of the more common selenium heterocycles.

<span class="mw-page-title-main">1,2,3-Benzothiadiazole</span> Organic heterocyclic aromatic chemical

1,2,3-Benzothiadiazole is a bicyclic aromatic chemical composed of a benzene ring that is fused to a 1,2,3-thiadiazole. A colorless solid, the compound is soluble in organic solvents.

<span class="mw-page-title-main">Hurd–Mori 1,2,3-thiadiazole synthesis</span> Name reaction in organic chemistry

The Hurd–Mori 1,2,3-thiadiazole synthesis is a name reaction in organic chemistry that allows for the generation of 1,2,3-thiadiazoles through the reaction of N-acylated or tosyl hydrazone derivatives with thionyl chloride.

<span class="mw-page-title-main">Borepin</span> Aromatic, boron-containing rings

Borepins are a class of boron-containing heterocycles used in main group chemistry. They consist of a seven-membered unsaturated ring with a tricoordinate boron in it. Simple borepins are analogues of cycloheptatriene, which is a seven-membered ring containing three carbon-carbon double bonds, each of which contributes 2π electrons for a total of 6π electrons. Unlike other seven-membered systems such as silepins and phosphepins, boron has a vacant p-orbital that can interact with the π and π* orbitals of the cycloheptatriene. This leads to an isoelectronic state akin to that of the tropylium cation, aromatizing the borepin while also allowing it to act as a Lewis acid. The aromaticity of borepin is relatively weak compared to traditional aromatics such as benzene or even cycloheptatriene, which has led to the synthesis of many fused, π-conjugated borepin systems over the years. Simple and complex borepins have been extensively studied more recently due to their high fluorescence and potential applications in technologies like organic light-emitting diodes (OLEDs) and photovoltaic cells.

References

  1. 1 2 Pesin, V. G.; Sergeev, V. A. (1969). "Research on 2,1,3-thia- and selenadiazole". Chemistry of Heterocyclic Compounds. 3 (5): 662–666. doi:10.1007/BF00468340. S2CID   98830770.
  2. Storr; Gilchrist, eds. (2004). "Product Class 11: 1,2,5-Thiadiazoles and Related Compounds". Category 2, Hetarenes and Related Ring Systems. doi:10.1055/sos-SD-013-00458. ISBN   978-3-13-112281-0.
  3. Rakitin, Oleg A. (2019). "Recent Developments in the Synthesis of 1,2,5-Thiadiazoles and 2,1,3-Benzothiadiazoles". Synthesis. 51 (23): 4338–4347. doi:10.1055/s-0039-1690679. S2CID   204128866.
  4. Luzzati, Z.Z. (1951). "Structure cristalline de piasélénol, piazthiol et benzofurazane". Acta Crystallographica. 4 (3): 193–200. Bibcode:1951AcCry...4..193L. doi:10.1107/S0365110X51000702.
  5. Fedin, E. I.; Todres, Z. V. (1970). "Studies in the field of aromatic heterocycles" (PDF). Chemistry of Heterocyclic Compounds. 4 (3): 308–313. doi:10.1007/BF00755265. S2CID   91864834.
  6. Pesin, V. G.; d'Yachenko, E. K. (1969). "Researches on 2,1,3-thia-and selenadiazole". Chemistry of Heterocyclic Compounds. 3: 68–70. doi:10.1007/BF00944264. S2CID   100997583.
  7. Houben-Weyl Methods of Organic Chemistry Vol. E 8d, 4th Edition Supplement: Hetarenes III (Five-Membered Rings with Two and More Heteroatoms in the Ring System) - Part 4. Georg Thieme Verlag. 14 May 2014. ISBN   978-3-13-181244-5.
  8. 1 2 3 Neto, Brenno A. D.; Lapis, Alexandre A. M.; da Silva Júnior, Eufrânio N.; Dupont, Jairton (January 2013). "2,1,3-Benzothiadiazole and Derivatives: Synthesis, Properties, Reactions, and Applications in Light Technology of Small Molecules". European Journal of Organic Chemistry . 2013 (2): 228–255. doi:10.1002/ejoc.201201161.
  9. Huang, Jian; Niu, Yuhua; Yang, Wei; Mo, Yueqi; Yuan, Ming; Cao, Yong (2002-07-01). "Novel Electroluminescent Polymers Derived from Carbazole and Benzothiadiazole". Macromolecules. 35 (16): 6080–6082. Bibcode:2002MaMol..35.6080H. doi:10.1021/ma0255130. ISSN   0024-9297.
  10. Tao, Yun-Mei; Li, Hong-Yan; Xu, Qiu-Lei; Zhu, Yu-Cheng; Kang, Ling-Chen; Zheng, You-Xuan; Zuo, Jing-Lin; You, Xiao-Zeng (2011). "Synthesis and characterization of efficient luminescent materials based on 2,1,3-benzothiadiazole with carbazole moieties". Synthetic Metals. 161 (9–10): 718–723. doi:10.1016/j.synthmet.2011.01.020.
  11. Kitamura, Chitoshi; Saito, Kakuya; Ouchi, Mikio; Yoneda, Akio; Yamashita, Yoshiro (October 2002). "Synthesis and Crystal Structure of 4,7-bis (2-thienylethynyl)-2,1,3-benzothiadiazole". Journal of Chemical Research. 2002 (10): 511–513. doi: 10.3184/030823402103170565 . ISSN   1747-5198.
  12. Velusamy, Marappan; Justin Thomas, K. R.; Lin, Jiann T.; Hsu, Ying-Chan; Ho, Kuo-Chuan (2005-05-01). "Organic Dyes Incorporating Low-Band-Gap Chromophores for Dye-Sensitized Solar Cells". Organic Letters. 7 (10): 1899–1902. doi:10.1021/ol050417f. ISSN   1523-7060. PMID   15876014.
  13. Ehret, A.; Stuhl, L.; Spitler, M. T. (2001-10-01). "Spectral Sensitization of TiO 2 Nanocrystalline Electrodes with Aggregated Cyanine Dyes". The Journal of Physical Chemistry B. 105 (41): 9960–9965. doi:10.1021/jp011952+. ISSN   1520-6106.
  14. Yao, Qiao-Hong; Meng, Fan-Shun; Li, Fu-You; Tian, He; Huang, Chun-Hui (2003-04-16). "Photoelectric conversion properties of four novel carboxylated hemicyanine dyes on TiO2 electrode". Journal of Materials Chemistry. 13 (5): 1048–1053. doi:10.1039/b300083b.
  15. Duan, Wentao; Huang, Jinhua; Kowalski, Jeffrey A.; Shkrob, Ilya A.; Vijayakumar, M.; Walter, Eric; Pan, Baofei; Yang, Zheng; Milshtein, Jarrod D.; Li, Bin; Liao, Chen; Zhang, Zhengcheng; Wang, Wei; Liu, Jun; Moore, Jeffery S.; Brushett, Fikile R.; Zhang, Lu; Wei, Xiaoliang (2017). ""Wine-Dark Sea" in an Organic Flow Battery: Storing Negative Charge in 2,1,3-Benzothiadiazole Radicals Leads to Improved Cyclability". ACS Energy Letters. 2 (5): 1156–1161. doi:10.1021/acsenergylett.7b00261.
  16. Frizon, Tiago Elias Allievi; Valdivia Martínez, Julio César; Westrup, José Luiz; Duarte, Rodrigo da Costa; Zapp, Eduardo; Domiciano, Kelvin Guessi; Rodembusch, Fabiano Severo; Dal-Bó, Alexandre Gonçalves (December 2016). "2,1,3-Benzothiadiazole-based fluorophores. Synthesis, electrochemical, thermal and photophysical characterization". Dyes and Pigments. 135: 26–35. doi:10.1016/j.dyepig.2016.07.011.
  17. Wu, Hongbin; Ying, Lei; Yang, Wei; Cao, Yong (2010). "White-Emitting Polymers and Devices". WOLEDs and Organic Photovoltaics. Green Energy and Technology. pp. 37–78. doi:10.1007/978-3-642-14935-1_2. ISBN   978-3-642-14934-4. S2CID   54914788.
  18. Wang, Yang; Michinobu, Tsuyoshi (2016). "Benzothiadiazole and its π-extended, heteroannulated derivatives: Useful acceptor building blocks for high-performance donor–acceptor polymers in organic electronics". Journal of Materials Chemistry C. 4 (26): 6200–6214. doi: 10.1039/C6TC01860B .
  19. Sukhikh, Taisiya; Ogienko, D.; Bashirov, D.; Konchenkoa, S. (May 21, 2019). "Luminescent complexes of 2,1,3-benzothiadiazole derivatives". Russian Chemical Bulletin. 68 (4): 651–661. doi:10.1007/s11172-019-2472-9. S2CID   182415426.