2006 in Turkey

Last updated

Flag of Turkey.svg
2006
in
Turkey
Centuries:
Decades:
See also: List of years in Turkey

The following lists events that happened in 2006 in Turkey.

Contents

Incumbents

Events

January

February

March

April

May

June

July

August

September

October

November

December

Deaths

Related Research Articles

<i>Influenza A virus</i> Species of virus

Influenza A virus (IAV) is a pathogen that causes the flu in birds and some mammals, including humans. It is an RNA virus whose subtypes have been isolated from wild birds. Occasionally, it is transmitted from wild to domestic birds, and this may cause severe disease, outbreaks, or human influenza pandemics.

<span class="mw-page-title-main">Avian influenza</span> Influenza caused by viruses adapted to birds

Avian influenza, also known as avian flu, is a bird flu caused by the influenza A virus, which can infect people. It is similar to other types of animal flu in that it is caused by a virus strain that has adapted to a specific host. The type with the greatest risk is highly pathogenic avian influenza (HPAI).

<span class="mw-page-title-main">Influenza A virus subtype H5N1</span> Subtype of influenza A virus

Influenza A virus subtype H5N1 (A/H5N1) is a subtype of the influenza A virus which can cause illness in humans and many other species. A bird-adapted strain of H5N1, called HPAI A(H5N1) for highly pathogenic avian influenza virus of type A of subtype H5N1, is the highly pathogenic causative agent of H5N1 flu, commonly known as avian influenza. It is enzootic in many bird populations, especially in Southeast Asia. One strain of HPAI A(H5N1) is spreading globally after first appearing in Asia. It is epizootic and panzootic, killing tens of millions of birds and spurring the culling of hundreds of millions of others to stem its spread. Many references to "bird flu" and H5N1 in the popular media refer to this strain.

<span class="mw-page-title-main">Global spread of H5N1</span> Spread of bird flu

The global spread of H5N1 influenza in birds is considered a significant pandemic threat. While other H5N1 influenza strains are known, they are significantly different on a genetic level from a recent, highly pathogenic, emergent strain of H5N1, which was able to achieve hitherto unprecedented global spread in 2008. The H5N1 strain is a fast-mutating, highly pathogenic avian influenza virus (HPAI) found in multiple bird species. It is both epizootic and panzootic. Unless otherwise indicated, "H5N1" in this timeline refers to the recent highly pathogenic strain of H5N1.

<span class="mw-page-title-main">Transmission and infection of H5N1</span> Spread of an influenza virus

Transmission and infection of H5N1 from infected avian sources to humans has been a concern since the first documented case of human infection in 1997, due to the global spread of H5N1 that constitutes a pandemic threat.

<span class="mw-page-title-main">Influenza A virus subtype H5N2</span> Virus subtype

H5 N2 is a subtype of the species Influenzavirus A. The subtype infects a wide variety of birds, including chickens, ducks, turkeys, falcons, and ostriches. Affected birds usually do not appear ill, and the disease is often mild as avian influenza viral subtypes go. Some variants of the subtype are much more pathogenic than others, and outbreaks of "high-path" H5N2 result in the culling of thousands of birds in poultry farms from time to time. It appears that people who work with birds can be infected by the virus, but suffer hardly any noticeable health effects. Even people exposed to the highly pathogenic H5N2 variety that killed ostrich chicks in South Africa only seem to have developed conjunctivitis, or a perhaps a mild respiratory illness. There is no evidence of human-to-human spread of H5N2. On November 12, 2005 it was reported that a falcon was found to have H5N2.

<span class="mw-page-title-main">H5N1 genetic structure</span>

H5N1 genetic structure is the molecular structure of the H5N1 virus's RNA.

<span class="mw-page-title-main">Disease surveillance</span> Monitoring spread of disease to establish patterns of progression

Disease surveillance is an epidemiological practice by which the spread of disease is monitored in order to establish patterns of progression. The main role of disease surveillance is to predict, observe, and minimize the harm caused by outbreak, epidemic, and pandemic situations, as well as increase knowledge about which factors contribute to such circumstances. A key part of modern disease surveillance is the practice of disease case reporting.

<span class="mw-page-title-main">H5N1 vaccine clinical trials</span> Clinical trials of influenza vaccine

H5N1 clinical trials are clinical trials concerning H5N1 vaccines, which are intended to provide immunization to influenza A virus subtype H5N1. They are intended to discover pharmacological effects and identify any adverse reactions the vaccines may achieve in humans.

<span class="mw-page-title-main">Global spread of H5N1 in 2006</span>

The global spread of H5N1 in birds is considered a significant pandemic threat.

<span class="mw-page-title-main">Global spread of H5N1 in 2005</span> Pandemic threat

The global spread of H5N1 in birds is considered a significant pandemic threat.

<span class="mw-page-title-main">Fujian flu</span> Strains of influenza

Fujian flu refers to flu caused by either a Fujian human flu strain of the H3N2 subtype of the Influenza A virus or a Fujian bird flu strain of the H5N1 subtype of the Influenza A virus. These strains are named after Fujian, a coastal province in Southeast China.

<span class="mw-page-title-main">Goose Guangdong virus</span> Strain of H5N1 influenza virus

The Goose Guangdong virus refers to the strain A/Goose/Guangdong/1/96 (Gs/Gd)-like H5N1 HPAI viruses. It is a strain of the Influenzavirus A subtype H5N1 virus that was first detected in a goose in Guangdong in 1996. It is an HPAI virus, meaning that it can kill a very high percentage of chickens in a flock in mere days. It is believed to be the immediate precursor of the current dominant strain of HPAI A(H5N1) that evolved from 1999 to 2002 creating the Z genotype that is spreading globally and is epizootic and panzootic, killing tens of millions of birds and spurring the culling of hundreds of millions of others to stem its spread.

<span class="mw-page-title-main">2007 Bernard Matthews H5N1 outbreak</span> Avian influenza outbreak in United Kingdom in 2007

The 2007 Bernard Matthews H5N1 outbreak was an occurrence of avian influenza in England caused by the H5N1 subtype of Influenza virus A that began on 30 January 2007. The infection affected poultry at one of Bernard Matthews' farms in Holton in Suffolk. It was the third instance of H5N1-subtype detected in the United Kingdom and a range of precautions were instituted to prevent spread of the disease including a large cull of turkeys, the imposition of segregation zones, and a disinfection programme for the plant.

<span class="mw-page-title-main">Human mortality from H5N1</span>

Human mortality from H5N1 or the human fatality ratio from H5N1 or the case-fatality rate of H5N1 is the ratio of the number of confirmed human deaths resulting from confirmed cases of transmission and infection of H5N1 to the number of those confirmed cases. For example, if there are 100 confirmed cases of humans infected with H5N1 and 50 die, then there is a 50% human fatality ratio. H5N1 flu is a concern due to the global spread of H5N1 that constitutes a pandemic threat. The majority of H5N1 flu cases have been reported in southeast and east Asia. The case-fatality rate is central to pandemic planning. Estimates of case-fatality (CF) rates for past influenza pandemics have ranged from to 2-3% for the 1918 pandemic to about 0.6% for the 1957 pandemic to 0.2% for the 1968 pandemic. As of 2008, the official World Health Organization estimate for the case-fatality rate for the outbreak of H5N1 avian influenza was approximately 60%. Public health officials in Ontario, Canada argue that the true case-fatality rate could be lower, pointing to studies suggesting it could be 14-33%, and warned that it was unlikely to be as low as the 0.1–0.4% rate that was built into many pandemic plans.

<span class="mw-page-title-main">Global spread of H5N1 in 2007</span>

The global spread of H5N1 in birds is considered a significant pandemic threat.

<span class="mw-page-title-main">H5N1 vaccine</span> Vaccine designed to provide immunity against H5N1 influenza

A H5N1 vaccine is an influenza vaccine intended to provide immunization to influenza A virus subtype H5N1.

<span class="mw-page-title-main">Influenza A virus subtype H7N9</span> Subtype of the influenza A virus

Influenza A virus subtype H7N9 (A/H7N9) is a bird flu strain of the species Influenza virus A. Avian influenza A H7 viruses normally circulate amongst avian populations with some variants known to occasionally infect humans. An H7N9 virus was first reported to have infected humans in March 2013, in China. Cases continued to be reported throughout April and then dropped to only a few cases during the summer months. At the closing of the year, 144 cases had been reported of which 46 had died. It is known that influenza tends to strike during the winter months, and the second wave, which began in October, was fanned by a surge in poultry production timed for Lunar New Year feasts that began at the end of January. January 2014 brought a spike in reports of illness with 96 confirmed reports of disease and 19 deaths. As of April 11, 2014, the outbreak's overall total was 419, including 7 in Hong Kong, and the unofficial number of deaths was 127.

<span class="mw-page-title-main">2020–2023 H5N8 outbreak</span> Outbreak of Avian influenza in poultry farms and wild birds

In the early 2020s, an ongoing outbreak of avian influenza subtype H5N8 has been occurring at poultry farms and among wild bird populations in several countries and continents, leading to the subsequent cullings of millions of birds to prevent a pandemic similar to that of the H5N1 outbreak in 2008. The first case of human transmission of avian flu, also known as bird flu, was reported by Russian authorities in February 2021, as several poultry farm workers tested positive for the virus.

Since 2020, global outbreaks of avian influenza subtype H5N1 have been occuring, with cases reported from every continent as of April 2024 except for Australia. In late 2023, H5N1 was discovered in the Antarctic for the first time, raising fears of imminent spread throughout the region, potentially leading to a "catastrophic breeding failure" among animals that had not previously been exposed to avian influenza viruses. The main virus involved in the global outbreak is classified as H5N1 clade 2.3.4.4b, however genetic diversification with other clades such as 2.3.2.1c has seen the virus evolve in ability to cause significant outbreaks in a broader range of species including mammals.