Names | |
---|---|
Preferred IUPAC name 4-Methylbenzene-1,2-diol | |
Other names 4-Methyl-1,2-dihydroxybenzene 3,4-Dihydroxytoluene Homocatechol 4-Methyl-1,2-benzenediol Homopyrocatechol p-Methylcatechol | |
Identifiers | |
3D model (JSmol) | |
ChEBI | |
ChemSpider | |
ECHA InfoCard | 100.006.559 |
PubChem CID | |
UNII | |
CompTox Dashboard (EPA) | |
| |
Properties | |
C7H8O2 | |
Molar mass | 124.139 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
4-Methylcatechol is an organic compound with the formula CH3C6H3(OH)2 A white solid, it is one of the isomers of methylbenzenediol.
The enzyme cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylate dehydrogenase uses cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylate and NAD(P)+ to produce 4-methylcatechol, NADH, NADPH and CO2. [1]
Members of the monocot subfamily Amaryllidoideae present a unique type of alkaloids, the norbelladine alkaloids, which are 4-methylcatechol derivatives combined with tyrosine. They are responsible for the poisonous properties of a number of the species. Over 200 different chemical structures of these compounds are known, of which 79 or more are known from Narcissus alone. [2]
The brand of low-temperature coke used as a smokeless fuel Coalite obtains homocatechol from ammoniacal liquor by solvent extraction, distillation and crystallisation.[ citation needed ]
Being structurally related to lignans, it is contributes to the aerosol generate by combustion of wood. [4]
It is a component of castoreum, the exudate from the castor sacs of the mature beaver. [5]
Acetophenone is the organic compound with the formula C6H5C(O)CH3. It is the simplest aromatic ketone. This colorless, viscous liquid is a precursor to useful resins and fragrances.
In organic chemistry, the Diels–Alder reaction is a chemical reaction between a conjugated diene and a substituted alkene, commonly termed the dienophile, to form a substituted cyclohexene derivative. It is the prototypical example of a pericyclic reaction with a concerted mechanism. More specifically, it is classified as a thermally allowed [4+2] cycloaddition with Woodward–Hoffmann symbol [π4s + π2s]. It was first described by Otto Diels and Kurt Alder in 1928. For the discovery of this reaction, they were awarded the Nobel Prize in Chemistry in 1950. Through the simultaneous construction of two new carbon–carbon bonds, the Diels–Alder reaction provides a reliable way to form six-membered rings with good control over the regio- and stereochemical outcomes. Consequently, it has served as a powerful and widely applied tool for the introduction of chemical complexity in the synthesis of natural products and new materials. The underlying concept has also been applied to π-systems involving heteroatoms, such as carbonyls and imines, which furnish the corresponding heterocycles; this variant is known as the hetero-Diels–Alder reaction. The reaction has also been generalized to other ring sizes, although none of these generalizations have matched the formation of six-membered rings in terms of scope or versatility. Because of the negative values of ΔH° and ΔS° for a typical Diels–Alder reaction, the microscopic reverse of a Diels–Alder reaction becomes favorable at high temperatures, although this is of synthetic importance for only a limited range of Diels–Alder adducts, generally with some special structural features; this reverse reaction is known as the retro-Diels–Alder reaction.
The quinones are a class of organic compounds that are formally "derived from aromatic compounds [such as benzene or naphthalene] by conversion of an even number of –CH= groups into –C(=O)– groups with any necessary rearrangement of double bonds", resulting in "a fully conjugated cyclic dione structure". The archetypical member of the class is 1,4-benzoquinone or cyclohexadienedione, often called simply "quinone". Other important examples are 1,2-benzoquinone (ortho-quinone), 1,4-naphthoquinone and 9,10-anthraquinone.
In chemical nomenclature, the IUPAC nomenclature of organic chemistry is a method of naming organic chemical compounds as recommended by the International Union of Pure and Applied Chemistry (IUPAC). It is published in the Nomenclature of Organic Chemistry. Ideally, every possible organic compound should have a name from which an unambiguous structural formula can be created. There is also an IUPAC nomenclature of inorganic chemistry.
A silabenzene is a heteroaromatic compound containing one or more silicon atoms instead of carbon atoms in benzene. A single substitution gives silabenzene proper; additional substitutions give a disilabenzene, trisilabenzene, etc.
In organic chemistry, dihydroxybenzenes (benzenediols) are organic compounds in which two hydroxyl groups are substituted onto a benzene ring. These aromatic compounds are classed as phenols. There are three structural isomers: 1,2-dihydroxybenzene is commonly known as catechol, 1,3-dihydroxybenzene is commonly known as resorcinol, and 1,4-dihydroxybenzene is commonly known as hydroquinone.
Castoreum is a yellowish exudate from the castor sacs of mature beavers and platypuses. Both animals use castoreum for various purposes; beavers use it in combination with urine to scent mark their territory, while platypuses use it in reproductive communication.
Aromatic-ring-hydroxylating dioxygenases (ARHD) incorporate two atoms of dioxygen (O2) into their substrates in the dihydroxylation reaction. The product is (substituted) cis-1,2-dihydroxycyclohexadiene, which is subsequently converted to (substituted) benzene glycol by a cis-diol dehydrogenase.
Dioxolane is a heterocyclic acetal with the chemical formula (CH2)2O2CH2. It is related to tetrahydrofuran (THF) by replacement of the methylene group (CH2) at the 2-position with an oxygen atom. The corresponding saturated 6-membered C4O2 rings are called dioxanes. The isomeric 1,2-dioxolane (wherein the two oxygen centers are adjacent) is a peroxide. 1,3-dioxolane is used as a solvent and as a comonomer in polyacetals.
Sulfolene, or butadiene sulfone is a cyclic organic chemical with a sulfone functional group. It is a white, odorless, crystalline, indefinitely storable solid, which dissolves in water and many organic solvents. The compound is used as a source of butadiene.
In organic chemistry, the di-π-methane rearrangement is the photochemical rearrangement of a molecule that contains two π-systems separated by a saturated carbon atom. In the aliphatic case, this molecules is a 1,4-diene; in the aromatic case, an allyl-substituted arene. The reaction forms (respectively) an ene- or aryl-substituted cyclopropane. Formally, it amounts to a 1,2 shift of one ene group or the aryl group, followed by bond formation between the lateral carbons of the non-migrating moiety:
In enzymology, a 1,2-dihydroxy-6-methylcyclohexa-3,5-dienecarboxylate dehydrogenase (EC 1.3.1.68) is an enzyme that catalyzes the chemical reaction
In enzymology, a 1,6-dihydroxycyclohexa-2,4-diene-1-carboxylate dehydrogenase (EC 1.3.1.25) is an enzyme that catalyzes the chemical reaction
In enzymology, a cis-1,2-dihydrobenzene-1,2-diol dehydrogenase (EC 1.3.1.19) is an enzyme that catalyzes the chemical reaction
In enzymology, a cis-1,2-dihydroxy-4-methylcyclohexa-3,5-diene-1-carboxylate dehydrogenase (EC 1.3.1.67) is an enzyme that catalyzes the chemical reaction
In enzymology, a benzene 1,2-dioxygenase is an enzyme that catalyzes the chemical reaction
Microbial arene oxidation (MAO) refers to the process by which microbial enzymes convert aromatic compounds into more oxidized products. The initial intermediates are arene oxides. A number of oxidized products are possible, the most commonly employed for organic synthesis are cis-1,2-dihydroxy-cyclohexa-3,5-dienes ("dihydrodiols").
3-Methylcatechol is an organic compound with the formula CH3C6H3(OH)2 A white solid, it is one of the isomers of methylbenzenediol. Being structurally related to lignans, it is contributes to the aerosol generate by combustion of wood.
Cyclohexane-1,2-diol is a chemical compound found in castoreum. It can exist in either cis- or trans-isomers.
Thermal rearrangements of aromatic hydrocarbons are considered to be unimolecular reactions that directly involve the atoms of an aromatic ring structure and require no other reagent than heat. These reactions can be categorized in two major types: one that involves a complete and permanent skeletal reorganization (isomerization), and one in which the atoms are scrambled but no net change in the aromatic ring occurs (automerization). The general reaction schemes of the two types are illustrated in Figure 1.