4-tert-Butylcatechol

Last updated
4-tert-Butylcatechol
Tert-butylcatechol Structural Formula V1.svg
4-tert-Butylcatechol-3D-spacefill.png
Names
Preferred IUPAC name
4-tert-Butylbenzene-1,2-diol
Other names
para-tert-Butylcatechol
p-tert-Butylcatechol
t-Butyl catechol
p-t-Butylpyrocatechol
p-tert-Butylpyrocatechol
4-t-Butylpyrocatechol
4-tert-Butylpyrocatechol
Identifiers
3D model (JSmol)
AbbreviationsTBC
ChEMBL
ChemSpider
ECHA InfoCard 100.002.413 OOjs UI icon edit-ltr-progressive.svg
PubChem CID
UNII
  • InChI=1S/C10H14O2/c1-10(2,3)7-4-5-8(11)9(12)6-7/h4-6,11-12H,1-3H3 Yes check.svgY
    Key: XESZUVZBAMCAEJ-UHFFFAOYSA-N Yes check.svgY
  • InChI=1/C10H14O2/c1-10(2,3)7-4-5-8(11)9(12)6-7/h4-6,11-12H,1-3H3
    Key: XESZUVZBAMCAEJ-UHFFFAOYAR
  • Oc1ccc(cc1O)C(C)(C)C
Properties
C10H14O2
Molar mass 166.217 g/mol
Melting point 50 °C
Boiling point 285 °C
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa).
Yes check.svgY  verify  (what is  Yes check.svgYX mark.svgN ?)

4-tert-Butylcatechol (TBC) is an organic chemical compound which is a derivative of catechol. [1] TBC is available in the form of a solid crystal flake [2] and 85% solution in methanol [3] or water. [4]

Contents

Uses

It is added as a stabilizer and polymerisation inhibitor to butadiene, styrene, [5] vinyl acetate, divinylbenzene [6] and other reactive monomer streams. [7]

TBC is also used as a stabilizer in the manufacture of polyurethane foam. [8] It also can be used as an antioxidant for synthetic rubber, polymers and oil derivatives. [7] It can be used as purification agent for aminoformate catalysts.[ citation needed ]

It is 25 times better than hydroquinone at 60 °C for polymerization inhibitory effect.[ citation needed ]

See also

Related Research Articles

<span class="mw-page-title-main">Polyvinyl chloride</span> Common synthetic polymer

Polyvinyl chloride (alternatively: poly(vinyl chloride), colloquial: vinyl or polyvinyl; abbreviated: PVC) is the world's third-most widely produced synthetic polymer of plastic (after polyethylene and polypropylene). About 40 million tons of PVC are produced each year.

<span class="mw-page-title-main">Chemical industry</span> Industry (branch), which is engaged in the manufacturing of chemical products

The chemical industry comprises the companies and other organizations that develop and produce industrial, specialty and other chemicals. Central to the modern world economy, it converts raw materials into commodity chemicals for industrial and consumer products. It includes industries for petrochemicals such as polymers for plastics and synthetic fibers; inorganic chemicals such as acids and alkalis; agricultural chemicals such as fertilizers, pesticides and herbicides; and other categories such as industrial gases, speciality chemicals and pharmaceuticals.

<span class="mw-page-title-main">Petrochemical</span> Chemical product derived from petroleum

Petrochemicals are the chemical products obtained from petroleum by refining. Some chemical compounds made from petroleum are also obtained from other fossil fuels, such as coal or natural gas, or renewable sources such as maize, palm fruit or sugar cane.

<span class="mw-page-title-main">Styrene</span> Chemical compound

Styrene is an organic compound with the chemical formula C6H5CH=CH2. Its structure consists of a vinyl group as substituent on benzene. Styrene is a colorless, oily liquid, although aged samples can appear yellowish. The compound evaporates easily and has a sweet smell, although high concentrations have a less pleasant odor. Styrene is the precursor to polystyrene and several copolymers, and is typically made from benzene for this purpose. Approximately 25 million tonnes of styrene were produced in 2010, increasing to around 35 million tonnes by 2018.

<span class="mw-page-title-main">Steric effects</span> Geometric aspects of ions and molecules affecting their shape and reactivity

Steric effects arise from the spatial arrangement of atoms. When atoms come close together there is generally a rise in the energy of the molecule. Steric effects are nonbonding interactions that influence the shape (conformation) and reactivity of ions and molecules. Steric effects complement electronic effects, which dictate the shape and reactivity of molecules. Steric repulsive forces between overlapping electron clouds result in structured groupings of molecules stabilized by the way that opposites attract and like charges repel.

<span class="mw-page-title-main">Catechol</span> Organic compound (C6H4(OH)2); benzene with two adjacent –OH groups

Catechol, also known as pyrocatechol or 1,2-dihydroxybenzene, is an organic compound with the molecular formula C6H4(OH)2. It is the ortho isomer of the three isomeric benzenediols. This colorless compound occurs naturally in trace amounts. It was first discovered by destructive distillation of the plant extract catechin. About 20,000 tonnes of catechol are now synthetically produced annually as a commodity organic chemical, mainly as a precursor to pesticides, flavors, and fragrances. Small amounts of catechol occur in fruits and vegetables.

<span class="mw-page-title-main">Hydroquinone</span> Chemical compound

Hydroquinone, also known as benzene-1,4-diol or quinol, is an aromatic organic compound that is a type of phenol, a derivative of benzene, having the chemical formula C6H4(OH)2. It has two hydroxyl groups bonded to a benzene ring in a para position. It is a white granular solid. Substituted derivatives of this parent compound are also referred to as hydroquinones. The name "hydroquinone" was coined by Friedrich Wöhler in 1843.

<span class="mw-page-title-main">SABIC</span> Saudi chemicals company

Saudi Basic Industries Corporation, known as SABIC, is a Saudi chemical manufacturing company. 70% of SABIC's shares are owned by Saudi Aramco. It is active in petrochemicals, chemicals, industrial polymers and fertilizers. It is the second largest public company in the Middle East and Saudi Arabia as listed in Tadawul.

<span class="mw-page-title-main">Hot-melt adhesive</span> Glue applied by heating

Hot-melt adhesive (HMA), also known as hot glue, is a form of thermoplastic adhesive that is commonly sold as solid cylindrical sticks of various diameters designed to be applied using a hot glue gun. The gun uses a continuous-duty heating element to melt the plastic glue, which the user pushes through the gun either with a mechanical trigger mechanism on the gun, or with direct finger pressure. The glue squeezed out of the heated nozzle is initially hot enough to burn and even blister skin. The glue is sticky when hot, and solidifies in a few seconds to one minute. Hot-melt adhesives can also be applied by dipping or spraying, and are popular with hobbyists and crafters both for affixing and as an inexpensive alternative to resin casting.

<span class="mw-page-title-main">Stabilizer (chemistry)</span> Chemical used to prevent degradation

In industrial chemistry, a stabilizer or stabiliser is a chemical that is used to prevent degradation.

<span class="mw-page-title-main">Dakin oxidation</span> Organic redox reaction that converts hydroxyphenyl aldehydes or ketones into benzenediols

The Dakin oxidation (or Dakin reaction) is an organic redox reaction in which an ortho- or para-hydroxylated phenyl aldehyde (2-hydroxybenzaldehyde or 4-hydroxybenzaldehyde) or ketone reacts with hydrogen peroxide (H2O2) in base to form a benzenediol and a carboxylate. Overall, the carbonyl group is oxidised, whereas the H2O2 is reduced.

<span class="mw-page-title-main">Hindered amine light stabilizers</span>

Hindered amine light stabilizers (HALS) are chemical compounds containing an amine functional group that are used as stabilizers in plastics and polymers. These compounds are typically derivatives of tetramethylpiperidine and are primarily used to protect the polymers from the effects of photo-oxidation; as opposed to other forms of polymer degradation such as ozonolysis. They are also increasingly being used as thermal stabilizers, particularly for low and moderate level of heat, however during the high temperature processing of polymers they remain less effective than traditional phenolic antioxidants.

<span class="mw-page-title-main">Methyl acrylate</span> Chemical compound

Methyl acrylate is an organic compound, more accurately the methyl ester of acrylic acid. It is a colourless liquid with a characteristic acrid odor. It is mainly produced to make acrylate fiber, which is used to weave synthetic carpets. It is also a reagent in the synthesis of various pharmaceutical intermediates. Owing to the tendency of methyl acrylate to polymerize, samples typically contain an inhibitor such as hydroquinone.

Polymer stabilizers are chemical additives which may be added to polymeric materials, such as plastics and rubbers, to inhibit or retard their degradation. Common polymer degradation processes include oxidation, UV-damage, thermal degradation, ozonolysis, combinations thereof such as photo-oxidation, as well as reactions with catalyst residues, dyes, or impurities. All of these degrade the polymer at a chemical level, via chain scission, uncontrolled recombination and cross-linking, which adversely affects many key properties such as strength, malleability, appearance and colour.

<span class="mw-page-title-main">4-Hydroxy-TEMPO</span> Chemical compound

4-Hydroxy-TEMPO or TEMPOL, formally 4-hydroxy-2,2,6,6-tetramethylpiperidin-1-oxyl, is a heterocyclic compound. Like the related TEMPO, it is used as a catalyst and chemical oxidant by virtue of being a stable aminoxyl radical. Its major appeal over TEMPO is that it is less expensive, being produced from triacetone amine, which is itself made via the condensation of acetone and ammonia. This makes it economically viable on an industrial scale.

<span class="mw-page-title-main">2-Vinylpyridine</span> Chemical compound

2-Vinylpyridine is an organic compound with the formula CH2CHC5H4N. It is a derivative of pyridine with a vinyl group in the 2-position, next to the nitrogen. It is a colorless liquid, although samples are often brown. It is used industrially as a precursor to specialty polymers and as an intermediate in the chemical, pharmaceutical, dye, and photo industries. Vinylpyridine is sensitive to polymerization. It may be stabilized with a polymerisation inhibitor such as tert-butylcatechol. Owing to its tendency to polymerize, samples are typically refrigerated.

<span class="mw-page-title-main">2-Ethylhexyl acrylate</span> Chemical compound

2-Ethylhexyl acrylate is a colorless liquid acrylate used in the making of paints, plastics and adhesives. It has an odor that has been variously described as pleasant or acrid and musty.

<span class="mw-page-title-main">UV-328</span> Chemical compound

UV-328 is a chemical compound that belongs to the phenolic benzotriazoles. It is a UV filter that is used as an antioxidant for plastics.

<span class="mw-page-title-main">Sylvia Stoesser</span> American chemist

Sylvia Marie Stoesser, was an American chemist. She was the first woman to be employed as a chemist at Dow Chemical Company. During her time at Dow, she made a number of major contributions, holding more than two dozen patents as a result of her research.

In polymer chemistry, polymerisation inhibitors are chemical compounds added to monomers to prevent their self-polymerisation. Unsaturated monomers such as acrylates, vinyl chloride, butadiene and styrene require inhibitors for both processing and safe transport and storage. Many monomers are purified industrially by distillation, which can lead to thermally-initiated polymerisation. Styrene, for example, is distilled at temperatures above 100 °C whereupon it undergoes thermal polymerisation at a rate of ~2% per hour. This polymerisation is undesirable, as it can foul the fractionating tower; it is also typically exothermic, which can lead to a runaway reaction and potential explosion if left unchecked. Once initiated, polymerisation is typically radical in mechanism and as such many polymerisation inhibitors act as radical scavengers.

References

  1. "Nomination Background: p-tert butylcatechol" (PDF). Nomination Background: p-tert butylcatechol. April 1993. Archived (PDF) from the original on 2017-01-31. Retrieved 4 September 2020.
  2. "TBC OPTIMA 100% FLAKES". Solvay. Retrieved 2020-09-04.
  3. "TBC OPTIMA 85% METHANOL". Solvay. Retrieved 2020-09-04.
  4. "TBC OPTIMA 85% WATER". Solvay. Retrieved 2020-09-04.
  5. "Styrene Safe Handling and Storage Guide" (PDF). Americas Styrenics. Archived (PDF) from the original on 2020-09-15. Retrieved 2020-09-04.
  6. "DuPont Divinylbenzene (TM) Technical Manual" (PDF). 2020-03-01. Archived (PDF) from the original on 2020-09-15. Retrieved 2020-09-04.
  7. 1 2 "4-Tertiary Butylcatechol | Business & Products". DIC Corporation. Retrieved 2020-09-04.
  8. "tert-Butylcatechol (TBC)". Silver Fern Chemical Inc. Retrieved 2020-09-04.

Sources