Duplex stainless steels are a family of alloys with a two-phase microstructure consisting of both austenitic (face-centred cubic) and ferritic (body-centred cubic) phases. They offer excellent mechanical properties, corrosion resistance, and toughness compared to other types of stainless steel. However, duplex stainless steel can be susceptible to a phenomenon known as 475 °C (887 °F) embrittlement or duplex stainless steel age hardening, which is a type of aging process that causes loss of plasticity in duplex stainless steel when it is heated in the range of 250 to 550 °C (480 to 1,020 °F). At this temperature range, spontaneous phase separation of the ferrite phase into iron-rich and chromium-rich nanophases occurs, with no change in the mechanical properties of the austenite phase. This type of embrittlement is due to precipitation hardening, which makes the material become brittle and prone to cracking.
Duplex stainless steel is a type of stainless steel that has a two-phase microstructure consisting of both austenitic (face-centred cubic) and ferritic (body-centred cubic) phases. [3] [4] This dual-phase structure gives duplex stainless steel a combination of mechanical and corrosion-resistant properties that are superior to those of either austenitic or ferritic stainless steel alone. [3] [4] The austenitic phase provides the steel with good ductility, high toughness, and high corrosion resistance, especially in acidic and chloride-containing environments. [3] [4] The ferritic phase, on the other hand, provides the steel with good strength, high resistance to stress corrosion cracking, and high resistance to pitting and crevice corrosion. [3] [4] They are therefore used extensively in the offshore oil and gas industry for pipework systems, manifolds, risers, etc. and in the petrochemical industry in the form of pipelines and pressure vessels. [3]
A duplex stainless steel mixture of austenite and ferrite microstructure is not necessarily in equal proportions, and where the alloy solidifies as ferrite, it is partially transformed to austenite when the temperature falls to around 1,000 °C (1,830 °F). [5] [6] Duplex steels have a higher chromium content compared to austenitic stainless steel, 20–28%; higher molybdenum, up to 5%; lower nickel, up to 9%; and 0.05–0.50% nitrogen. [6] [5] Thus, duplex stainless steel alloys have good corrosion resistance and higher strength than standard austenitic stainless steels such as type 304 or 316. [7] [4]
Alpha (α) phase is a ferritic phase with body-centred cubic (BCC) structure, Imm [229] space group, 2.866 Å lattice parameter, and has one twinning system {112}<111> and three slip systems {110}<111>, {112}<111> and {123}<111>; however, the last system rarely activates. [8] [9] Gamma () phase is austenitic with a face-centred cubic (FCC) structure, Fmm [259] space group, and 3.66 Å lattice parameter. It normally has more nickel, copper, and interstitial carbon and nitrogen. [10] Plastic deformation occurs in austenite more readily than in ferrite. [11] [2] During deformation, straight slip bands form in the austenite grains and propagate to the ferrite-austenite grain boundaries, assisting in the slipping of the ferrite phase. Curved slip bands also form due to the bulk-ferrite-grain deformation. [12] [13] [14] The formation of slip bands indicates a concentrated unidirectional slip on certain planes causing a stress concentration. [15]
Duplex stainless steel can have limited toughness due to its large ferritic grain size, and its tendencies to hardening and embrittlement, i.e., loss of plasticity, at temperatures ranging from 250 to 550 °C (482 to 1,022 °F), especially at 475 °C (887 °F). [18] At this temperature range, spinodal decomposition of the supersaturated solid ferrite solution into iron-rich nanophase () and chromium-rich nanophase (), accompanied by G-phase precipitation, occurs. [18] [19] [20] This makes the ferrite phase a preferential initiation site for micro-cracks. [21] This is because aging encourages Σ3 {112}<111> ferrite deformation twinning at slow strain rate and room temperature in tensile or compressive deformation, nucleating from local stress concentration sites, [18] [22] and parent-twinning boundaries, with 60° (in or out) misorientation, are suitable for cleavage crack nucleation. [22] [23] [24]
Spinodal decomposition refers to the spontaneous separation of a phase into two coherent phases via uphill diffusion, i.e., from a region of lower concentration to a region of higher concentration resulting in a negative diffusion coefficient , without a barrier to nucleation due to the phase being thermodynamically unstable (i.e., miscibility gap, + region in the figure), [25] where is the Gibbs free energy per mole of solution and the composition. It increases hardness and decreases magneticity. [26] Miscibility gap describes the region in a phase diagram below the melting point of each compound where the solid phase splits into the liquid of two separated stable phases. [27]
For 475 °C embrittlement to occur, the chromium content needs to exceed 12%. [28] The addition of nickel accelerates the spinodal decomposition by promoting the iron-rich nanophase formation. [29] Nitrogen changes the distribution of chromium, nickel, and molybdenum in the ferrite phase but does not prevent the phase decomposition. [30] Other elements like molybdenum, manganese, and silicon do not affect the formation of iron-rich nanophase. [31] However, manganese and molybdenum partition to the iron-rich nanophase, while nickel partitions to the chromium-rich nanophase. [19]
Using Field Emission Gun Transmission Electron Microscope FEG-TEM, the nanometre-scaled modulated structure of the decomposed ferrite was revealed as chromium-rich nanophase gave the bright image, and iron-rich darker image. [19] It also revealed that these modulated nanophases grow coarser with aging time. [19] [32] Decomposed phases start as irregular rounded shapes with no particular arrangement, but with time the chromium-rich nanophase takes a plat shape aligned in the <110> directions. [32]
Spinodal decomposition increases the hardening of the material due to the misfit between the chromium-rich and iron-rich nano-phases, internal stress, and variation of elastic modulus. The formation of coherent precipitates induces an equal but opposite strain, raising the system's free energy depending on the precipitate shape and matrix and precipitate elastic properties. [27] [33] Around a spherical inclusion, the distortion is purely hydrostatic. [27]
G-phase precipitates appear prominently at grain boundaries. [20] and are phase rich in nickel, titanium, and silicon, [20] but chromium and manganese may substitute titanium sites. [34] G-phase precipitates occur during long-term aging, are encouraged by increasing nickel content in the ferrite phase, [34] and reduce corrosion resistance significantly. [35] It has ellipsoid morphology, FCC structure (Fmm), and 11.4 Å lattice parameter, [36] with a diameter less than 50 nm that increases with aging. [37] [38]
Thus, the embrittlement is caused by dislocations impediment/ locking by the spinodally decomposed matrix [39] [40] and strain around G-phase precipitates, [41] i.e., internal stress relaxation by the formation of Cottrell atmosphere. [42]
Furthermore, the ferrite hardness increases with aging time, the hardness of the ductile austenite phase remains nearly unchanged [39] [40] [43] due to faster diffusivity in ferrite compared to the austenite. [26] However, austenite undergoes a substitutional redistribution of elements, enhancing galvanic corrosion between the two phases. [44]
550 °C heat treatment can reverse spinodal decomposition but not affect the G-phase precipitates. [45] The ferrite matrix spinodal decomposition can be substantially reversed by introducing an external pulsed electric current that changes the system's free energy due to the difference in electrical conductivity between the nanophases and the dissolution of G-phase precipitates. [46] [47]
Cyclic loading suppresses spinodal decomposition, [48] and radiation accelerates it but changes the decomposition nature from an interconnected network of modulated nanophases to isolated islands. [49]
Stainless steel, also known as inox, corrosion-resistant steel (CRES) and rustless steel, is an alloy of iron that is resistant to rusting and corrosion. It contains iron with chromium and other elements such as molybdenum, carbon, nickel and nitrogen depending on its specific use and cost. Stainless steel's resistance to corrosion results from the 10.5%, or more, chromium content which forms a passive film that can protect the material and self-heal in the presence of oxygen.
Austenite, also known as gamma-phase iron (γ-Fe), is a metallic, non-magnetic allotrope of iron or a solid solution of iron with an alloying element. In plain-carbon steel, austenite exists above the critical eutectoid temperature of 1000 K (727 °C); other alloys of steel have different eutectoid temperatures. The austenite allotrope is named after Sir William Chandler Roberts-Austen (1843–1902). It exists at room temperature in some stainless steels due to the presence of nickel stabilizing the austenite at lower temperatures.
Bainite is a plate-like microstructure that forms in steels at temperatures of 125–550 °C. First described by E. S. Davenport and Edgar Bain, it is one of the products that may form when austenite is cooled past a temperature where it is no longer thermodynamically stable with respect to ferrite, cementite, or ferrite and cementite. Davenport and Bain originally described the microstructure as being similar in appearance to tempered martensite.
High-strength low-alloy steel (HSLA) is a type of alloy steel that provides better mechanical properties or greater resistance to corrosion than carbon steel. HSLA steels vary from other steels in that they are not made to meet a specific chemical composition but rather specific mechanical properties. They have a carbon content between 0.05 and 0.25% to retain formability and weldability. Other alloying elements include up to 2.0% manganese and small quantities of copper, nickel, niobium, nitrogen, vanadium, chromium, molybdenum, titanium, calcium, rare-earth elements, or zirconium. Copper, titanium, vanadium, and niobium are added for strengthening purposes. These elements are intended to alter the microstructure of carbon steels, which is usually a ferrite-pearlite aggregate, to produce a very fine dispersion of alloy carbides in an almost pure ferrite matrix. This eliminates the toughness-reducing effect of a pearlitic volume fraction yet maintains and increases the material's strength by refining the grain size, which in the case of ferrite increases yield strength by 50% for every halving of the mean grain diameter. Precipitation strengthening plays a minor role, too. Their yield strengths can be anywhere between 250–590 megapascals (36,000–86,000 psi). Because of their higher strength and toughness HSLA steels usually require 25 to 30% more power to form, as compared to carbon steels.
Pearlite is a two-phased, lamellar structure composed of alternating layers of ferrite and cementite that occurs in some steels and cast irons. During slow cooling of an iron-carbon alloy, pearlite forms by a eutectoid reaction as austenite cools below 723 °C (1,333 °F). Pearlite is a microstructure occurring in many common grades of steels.
Maraging steels are steels that are known for possessing superior strength and toughness without losing ductility. Aging refers to the extended heat-treatment process. These steels are a special class of very-low-carbon ultra-high-strength steels that derive their strength not from carbon, but from precipitation of intermetallic compounds. The principal alloying element is 15 to 25 wt% nickel. Secondary alloying elements, which include cobalt, molybdenum and titanium, are added to produce intermetallic precipitates. Original development was carried out on 20 and 25 wt% Ni steels to which small additions of aluminium, titanium, and niobium were made; a rise in the price of cobalt in the late 1970s led to the development of cobalt-free maraging steels.
Cryogenic hardening is a cryogenic treatment process where the material is cooled to approximately −185 °C (−301 °F), usually using liquid nitrogen. It can have a profound effect on the mechanical properties of certain steels, provided their composition and prior heat treatment are such that they retain some austenite at room temperature. It is designed to increase the amount of martensite in the steel's crystal structure, increasing its strength and hardness, sometimes at the cost of toughness. Presently this treatment is being used on tool steels, high-carbon, high-chromium steels and in some cases to cemented carbide to obtain excellent wear resistance. Recent research shows that there is precipitation of fine carbides in the matrix during this treatment which imparts very high wear resistance to the steels.
An archwire in orthodontics is a wire conforming to the alveolar or dental arch that can be used with dental braces as a source of force in correcting irregularities in the position of the teeth. An archwire can also be used to maintain existing dental positions; in this case it has a retentive purpose.
Austenitic stainless steel is one of the five classes of stainless steel by crystalline structure. Its primary crystalline structure is austenite and it prevents steels from being hardenable by heat treatment and makes them essentially non-magnetic. This structure is achieved by adding enough austenite-stabilizing elements such as nickel, manganese and nitrogen. The Incoloy family of alloys belong to the category of super austenitic stainless steels.
Nitriding is a heat treating process that diffuses nitrogen into the surface of a metal to create a case-hardened surface. These processes are most commonly used on low-alloy steels. They are also used on titanium, aluminium and molybdenum.
Embrittlement is a significant decrease of ductility of a material, which makes the material brittle. Embrittlement is used to describe any phenomena where the environment compromises a stressed material's mechanical performance, such as temperature or environmental composition. This is oftentimes undesirable as brittle fracture occurs quicker and can much more easily propagate than ductile fracture, leading to complete failure of the equipment. Various materials have different mechanisms of embrittlement, therefore it can manifest in a variety of ways, from slow crack growth to a reduction of tensile ductility and toughness.
The SAE steel grades system is a standard alloy numbering system for steel grades maintained by SAE International.
Alloy steel is steel that is alloyed with a variety of elements in total amounts between 1.0% and 50% by weight to improve its mechanical properties.
Michael A. Streicher was an American metallurgist and engineer who became internationally recognized for his work on the testing and development of corrosion-resistant stainless steel alloys. He published widely in technical journals and textbooks and received numerous patents for his inventions.
Dual-phase steel (DP steel) is a high-strength steel that has a ferritic–martensitic microstructure. DP steels are produced from low or medium carbon steels that are quenched from a temperature above A1 but below A3 determined from continuous cooling transformation diagram. This results in a microstructure consisting of a soft ferrite matrix containing islands of martensite as the secondary phase (martensite increases the tensile strength). Therefore, the overall behaviour of DP steels is governed by the volume fraction, morphology (size, aspect ratio, interconnectivity, etc.), the grain size and the carbon content. For achieving these microstructures, DP steels typically contain 0.06–0.15 wt.% C and 1.5-3% Mn (the former strengthens the martensite, and the latter causes solid solution strengthening in ferrite, while both stabilize the austenite), Cr & Mo (to retard pearlite or bainite formation), Si (to promote ferrite transformation), V and Nb (for precipitation strengthening and microstructure refinement). The desire to produce high strength steels with formability greater than microalloyed steel led the development of DP steels in the 1970s.
SAF 2205, is a Alleima-owned trademark for a 22Cr duplex (ferritic-austenitic) stainless steel. SAF derives from Sandvik Austenite Ferrite. The nominal chemical composition of SAF 2205 is 22% chromium, 5% nickel, 3.2% molybdenum and other alloying elements such as nitrogen and manganese. The UNS designation for SAF 2205 is S31803/S32205 and the EN steel no. is 1.4462. SAF 2205 or Duplex 2205 is often used as an alternative to expensive 904L stainless steel owing to similar properties but cheaper ingredients. Duplex stainless steel is available in multiple forms like bars, billets, pipes, tubes, sheets, plates and even processed to fittings and flanges.
SAF 2507, is a Alleima-owned trademark for a 25Cr duplex (ferritic-austenitic) stainless steel. The nominal chemical composition of SAF 2507 is 25% chromium, 7% nickel, 4% molybdenum and other alloying elements such as nitrogen and manganese. The UNS designation for SAF 2507 is S32750 and the EN steel no. is 1.4410. SAF derives from Sandvik Austenite Ferrite.
Duplex stainless steels are a family of stainless steels. These are called duplex grades because their metallurgical structure consists of two phases, austenite and ferrite in roughly equal proportions. They are designed to provide better corrosion resistance, particularly chloride stress corrosion and chloride pitting corrosion, and higher strength than standard austenitic stainless steels such as type A2/304 or A4/316. The main differences in composition, when compared with an austenitic stainless steel is that the duplex steels have a higher chromium content, 20–28%; higher molybdenum, up to 5%; lower nickel, up to 9% and 0.05–0.50% nitrogen. Both the low nickel content and the high strength give significant cost benefits. They are therefore used extensively in the offshore oil and gas industry for pipework systems, manifolds, risers, etc. and in the petrochemical industry in the form of pipelines and pressure vessels. In addition to the improved corrosion resistance compared with the 300 series duplex stainless steels also have higher strength. For example, a Type 304 stainless steel has a 0.2% proof strength in the region of 280 MPa (41 ksi), a 22%Cr duplex stainless steel a minimum 0.2% proof strength of some 450 MPa (65 ksi) and a superduplex grade a minimum of 550 MPa (80 ksi).
Ferritic stainless steel forms one of the five stainless steel families, the other four being austenitic, martensitic, duplex stainless steels, and precipitation hardened. For example, many of AISI 400-series of stainless steels are ferritic steels. By comparison with austenitic types, these are less hardenable by cold working, less weldable, and should not be used at cryogenic temperatures. Some types, like the 430, have excellent corrosion resistance and are very heat tolerant.
κ-Carbides are a special class of carbide structures. They are most known for appearing in steels containing manganese and aluminium where they have the molecular formula (Fe,Mn)
3AlC.