A-VSB

Last updated

A-VSB or Advanced VSB is a modification of the 8VSB modulation system used for transmission of digital television using the ATSC system. One of the constraints of conventional ATSC transmission is that reliable reception is difficult or impossible when the receiver is moving at speeds associated with normal vehicular traffic. The technology was jointly developed by Samsung and Rohde & Schwarz.

8VSB is the modulation method used for broadcast in the ATSC digital television standard. ATSC and 8VSB modulation is used primarily in North America; in contrast, the DVB-T standard uses COFDM.

In electronics and telecommunications, modulation is the process of varying one or more properties of a periodic waveform, called the carrier signal, with a modulating signal that typically contains information to be transmitted. Most radio systems in the 20th century used frequency modulation (FM) or amplitude modulation (AM) for radio broadcast.

Transmission (telecommunications) process of sending and propagating a signal

In telecommunications, transmission is the process of sending and propagating an analogue or digital information signal over a physical point-to-point or point-to-multipoint transmission medium, either wired, optical fiber or wireless.

Contents

A-VSB builds on the existing ATSC transmission standard to enhance DTV receivers’ ability to receive the main MPEG transport stream in dynamic environments. The system enables broadcasters to include multiple streams with additional error correction and time diversity encoding for enhanced reception. In addition, A-VSB facilitates synchronization of multiple transmission towers, which should improve coverage with higher uniform signal strength throughout a service area, even in locations that normally would be shielded by obstacles such as hills or buildings.

Digital television (DTV) is the transmission of television signals, including the sound channel, using digital encoding, in contrast to the earlier television technology, analog television, in which the video and audio are carried by analog signals. It is an innovative advance that represents the first significant evolution in television technology since color television in the 1950s. Digital TV transmits in a new image format called HDTV, with greater resolution than analog TV, in a wide screen aspect ratio similar to recent movies in contrast to the narrower screen of analog TV. It makes more economical use of scarce radio spectrum space; it can transmit multiple channels, up to 7, in the same bandwidth occupied by a single channel of analog television, and provides many new features that analog television cannot. A transition from analog to digital broadcasting began around 2006 in some countries, and many industrial countries have now completed the changeover, while other countries are in various stages of adaptation. Different digital television broadcasting standards have been adopted in different parts of the world; below are the more widely used standards:

MPEG transport stream is a standard digital container format for transmission and storage of audio, video, and Program and System Information Protocol (PSIP) data. It is used in broadcast systems such as DVB, ATSC and IPTV.

Time Diversity is used in digital communication systems to combat that the transmissions channel may suffer from error bursts due to time-varying channel conditions. The error bursts may be caused by fading in combination with a moving receiver, transmitter or obstacle, or by intermittent electromagnetic interference, for example from crosstalk in a cable, or co-channel interference from radio transmitters.

A-VSB incorporates three new elements: a Supplementary Reference Signal (SRS), a Scalable Turbo Stream (STS), and support for Single Frequency Networks (SFN).

Supplementary Reference Signal

A-VSB receivers utilize the SRS in order to remain synchronized with the transmission. This helps maintain reception of the main stream and any turbo streams even with rapidly changing multipath interference, such as when the signal is reflected from moving objects near the receiver or when the receiver itself is moving.

Multipath interference

Multipath interference is a phenomenon in the physics of waves whereby a wave from a source travels to a detector via two or more paths and, under the right condition, the two components of the wave interfere. Multipath interference is a common cause of "ghosting" in analog television broadcasts and of fading of radio waves.

The SRS adds an additional equalizer training sequence to the Transport Stream Adaptation Field, which should be ignored by existing transport decoders. The added signal shortens the existing 24ms equalizer update time by a selectable factor, from 120x to 312x. A receiver equipped with this new equalizer can track rapid multipath fading, and thus supports mobile reception. SRS can be used alone, without the STS, offering a slight improvement in portable (stationary—not true mobile) service.

Blind equalization is a digital signal processing technique in which the transmitted signal is inferred (equalized) from the received signal, while making use only of the transmitted signal statistics. Hence, the use of the word blind in the name.

Fading

In wireless communications, fading is variation of the attenuation of a signal with various variables. These variables include time, geographical position, and radio frequency. Fading is often modeled as a random process. A fading channel is a communication channel that experiences fading. In wireless systems, fading may either be due to multipath propagation, referred to as multipath-induced fading, weather, or shadowing from obstacles affecting the wave propagation, sometimes referred to as shadow fading.

Scalable Turbo Stream

The addition of a new turbo-coded stream enables broadcasters to increase the error-correction capability of a secondary stream transmission. Two options are proposed for the turbo stream: ½ and ¼ rate codes, i.e., the new video stream requires 2x or 4x the video rate in final transport payload. The new Threshold of Visibility (TOV) SNRs are 9.6 and 4.5 dB, respectively; 1.6dB is claimed with diversity reception. Conventional 8VSB has a TOV SNR of 15.1 dB. The turbo codec uses single-input single-output (SISO) iterative decoding and time interleaving.

Single Frequency Networks

The last option—SFN—is made possible by adding a VSB Frame Initialization Packet (VFIP) that synchronizes the transport frame sequences to a GPS reference.

Related Research Articles

In telecommunications, orthogonal frequency-division multiplexing (OFDM) is a method of encoding digital data on multiple carrier frequencies. OFDM has developed into a popular scheme for wideband digital communication, used in applications such as digital television and audio broadcasting, DSL internet access, wireless networks, power line networks, and 4G mobile communications.

Digital audio broadcasting digital radio standard

Digital audio broadcasting (DAB) is a digital radio standard for broadcasting digital audio radio services, used in many countries around the world, though not North America.

DVB-T is an abbreviation for "Digital Video Broadcasting — Terrestrial"; it is the DVB European-based consortium standard for the broadcast transmission of digital terrestrial television that was first published in 1997 and first broadcast in the UK in 1998. This system transmits compressed digital audio, digital video and other data in an MPEG transport stream, using coded orthogonal frequency-division multiplexing modulation. It is also the format widely used worldwide for Electronic News Gathering for transmission of video and audio from a mobile newsgathering vehicle to a central receive point.

Advanced Television Systems Committee (ATSC) standards are a set of standards for digital television transmission over terrestrial, cable, and satellite networks. It is largely a replacement for the analog NTSC standard, and like that standard, used mostly in the United States, Mexico and Canada. Other former users of NTSC, like Japan, have not used ATSC during their digital television transition because they adopted their own system called ISDB.

Terrestrial television systems are encoding or formatting standards for the transmission and reception of terrestrial television signals. There were three main analogue television systems in use around the world until the late 2010s (expected): NTSC, PAL, and SECAM. Now in digital terrestrial television (DTT), there are four main systems in use around the world: ATSC, DVB, ISDB and DTMB.

A rake receiver is a radio receiver designed to counter the effects of multipath fading. It does this by using several "sub-receivers" called fingers, that is, several correlators each assigned to a different multipath component. Each finger independently decodes a single multipath component; at a later stage the contribution of all fingers are combined in order to make the most use of the different transmission characteristics of each transmission path. This could very well result in higher signal-to-noise ratio (or Eb/N0) in a multipath environment than in a "clean" environment.

Single-frequency network

A single-frequency network or SFN is a broadcast network where several transmitters simultaneously send the same signal over the same frequency channel.

ATSC tuner

An ATSCtuner, often called an ATSC receiver or HDTV tuner is a type of television tuner that allows reception of digital television (DTV) television channels transmitted by television stations in North America, parts of Central America and South Korea that use ATSC standards. Such tuners may be integrated into a television set, VCR, digital video recorder (DVR), or set-top box that provides audio/video output connectors of various types.

Mobile television

Mobile television is television watched on a small handheld or mobile device. It includes pay TV service delivered via mobile phone networks or received free-to-air via terrestrial television stations. Regular broadcast standards or special mobile TV transmission formats can be used. Additional features include downloading TV programs and podcasts from the Internet and storing programming for later viewing.

Cliff effect

In telecommunications, the (digital) cliff effect or brickwall effect is a sudden loss of digital signal reception. Unlike analog signals, which gradually fade when signal strength decreases or electromagnetic interference or multipath increases, a digital signal provides data which is either perfect or non-existent at the receiving end. It is named for a graph of reception quality versus signal quality, where the digital signal "falls off a cliff" instead of having a gradual rolloff. This is an example of an EXIT chart.

Audio-to-video synchronization refers to the relative timing of audio (sound) and video (image) parts during creation, post-production (mixing), transmission, reception and play-back processing. AV synchronization can be an issue in television, videoconferencing, or film.

E-VSB or Enhanced VSB is an optional enhancement to the original ATSC Standards that use the 8VSB modulation system used for transmission of digital television. It is intended for improving reception where signals are weaker, including fringe reception areas, and on portable devices such as handheld televisions or mobile phones. It does not cause problems to older receivers, but they cannot take advantage of its features. E-VSB was approved by the ATSC committee in 2004. However, it has been implemented by few stations or manufacturers.

MPH (Mobile-Pedestrian-Handheld) was a mobile extension of the ATSC television standard jointly developed by Harris Corporation, LG Electronics, Inc. and its U.S. research subsidiary, Zenith Electronics. The MPH platform allowed local TV stations to deliver ATSC-compatible content to mobile and video devices such as mobile phones, portable media players, laptop computers, personal navigation devices and automobile-based "infotainment systems." The service is called "in-band" because local broadcasters are providing mobile TV services as part of their terrestrial transmission within the same, existing 6 MHz channel they use for their ATSC DTV programming.

ATSC-M/H is a U.S. standard for mobile digital TV that allows TV broadcasts to be received by mobile devices.

Time slicing is a technique used by the DVB-H and ATSC-M/H technologies for achieving power-savings on mobile terminal devices. It is based on the time-multiplexed transmission of different services.

In North American digital terrestrial television broadcasting, a distributed transmission system is a form of single-frequency network in which a single broadcast signal is fed via microwave, landline, or communications satellite to multiple synchronised terrestrial radio transmitter sites. The signal is then simultaneously broadcast on the same frequency in different overlapping portions of the same coverage area, effectively combining many small transmitters to generate a broadcast area rivalling that of one large transmitter or to fill gaps in coverage due to terrain or localised obstacles.

In digital communications, a turbo equalizer is a type of receiver used to receive a message corrupted by a communication channel with intersymbol interference (ISI). It approaches the performance of a maximum a posteriori (MAP) receiver via iterative message passing between a soft-in soft-out (SISO) equalizer and a SISO decoder. It is related to turbo codes in that a turbo equalizer may be considered a type of iterative decoder if the channel is viewed as a non-redundant convolutional code. The turbo equalizer is different from classic a turbo-like code, however, in that the 'channel code' adds no redundancy and therefore can only be used to remove non-gaussian noise.

References