A Treatise on the Circle and the Sphere

Last updated

A Treatise on the Circle and the Sphere is a mathematics book on circles, spheres, and inversive geometry. It was written by Julian Coolidge, and published by the Clarendon Press in 1916. [1] [2] [3] [4] The Chelsea Publishing Company published a corrected reprint in 1971, [5] [6] and after the American Mathematical Society acquired Chelsea Publishing it was reprinted again in 1997. [7]

Contents

Topics

As is now standard in inversive geometry, the book extends the Euclidean plane to its one-point compactification, and considers Euclidean lines to be a degenerate case of circles, passing through the point at infinity. It identifies every circle with the inversion through it, and studies circle inversions as a group, the group of Möbius transformations of the extended plane. Another key tool used by the book are the "tetracyclic coordinates" of a circle, quadruples of complex numbers describing the circle in the complex plane as the solutions to the equation . It applies similar methods in three dimensions to identify spheres (and planes as degenerate spheres) with the inversions through them, and to coordinatize spheres by "pentacyclic coordinates". [7]

Other topics described in the book include:

Legacy

At the time of its original publication this book was called encyclopedic, [2] [3] and "likely to become and remain the standard for a long period". [2] It has since been called a classic, [5] [7] in part because of its unification of aspects of the subject previously studied separately in synthetic geometry, analytic geometry, projective geometry, and differential geometry. [5] At the time of its 1971 reprint, it was still considered "one of the most complete publications on the circle and the sphere", and "an excellent reference". [6]

Related Research Articles

<span class="mw-page-title-main">Hyperbolic geometry</span> Non-Euclidean geometry

In mathematics, hyperbolic geometry is a non-Euclidean geometry. The parallel postulate of Euclidean geometry is replaced with:

In geometry, inversive geometry is the study of inversion, a transformation of the Euclidean plane that maps circles or lines to other circles or lines and that preserves the angles between crossing curves. Many difficult problems in geometry become much more tractable when an inversion is applied. Inversion seems to have been discovered by a number of people contemporaneously, including Steiner (1824), Quetelet (1825), Bellavitis (1836), Stubbs and Ingram (1842–3) and Kelvin (1845).

In mathematics, conformal geometry is the study of the set of angle-preserving (conformal) transformations on a space.

<span class="mw-page-title-main">Descartes' theorem</span> Equation for radii of tangent circles

In geometry, Descartes' theorem states that for every four kissing, or mutually tangent, circles, the radii of the circles satisfy a certain quadratic equation. By solving this equation, one can construct a fourth circle tangent to three given, mutually tangent circles. The theorem is named after René Descartes, who stated it in 1643.

<span class="mw-page-title-main">Pascal's theorem</span> Theorem on the collinearity of three points generated from a hexagon inscribed on a conic

In projective geometry, Pascal's theorem states that if six arbitrary points are chosen on a conic and joined by line segments in any order to form a hexagon, then the three pairs of opposite sides of the hexagon meet at three points which lie on a straight line, called the Pascal line of the hexagon. It is named after Blaise Pascal.

<span class="mw-page-title-main">Apollonian gasket</span> Fractal composed of tangent circles

In mathematics, an Apollonian gasket or Apollonian net is a fractal generated by starting with a triple of circles, each tangent to the other two, and successively filling in more circles, each tangent to another three. It is named after Greek mathematician Apollonius of Perga.

In geometry, hyperbolic motions are isometric automorphisms of a hyperbolic space. Under composition of mappings, the hyperbolic motions form a continuous group. This group is said to characterize the hyperbolic space. Such an approach to geometry was cultivated by Felix Klein in his Erlangen program. The idea of reducing geometry to its characteristic group was developed particularly by Mario Pieri in his reduction of the primitive notions of geometry to merely point and motion.

<i>Geometry of Complex Numbers</i> Maths textbook

Geometry of Complex Numbers: Circle Geometry, Moebius Transformation, Non-Euclidean Geometry is an undergraduate textbook on geometry, whose topics include circles, the complex plane, inversive geometry, and non-Euclidean geometry. It was written by Hans Schwerdtfeger, and originally published in 1962 as Volume 13 of the Mathematical Expositions series of the University of Toronto Press. A corrected edition was published in 1979 in the Dover Books on Advanced Mathematics series of Dover Publications (ISBN 0-486-63830-8). The Basic Library List Committee of the Mathematical Association of America has suggested its inclusion in undergraduate mathematics libraries.

<span class="mw-page-title-main">Problem of Apollonius</span> Construct circles that are tangent to three given circles in a plane

In Euclidean plane geometry, Apollonius's problem is to construct circles that are tangent to three given circles in a plane (Figure 1). Apollonius of Perga posed and solved this famous problem in his work Ἐπαφαί ; this work has been lost, but a 4th-century AD report of his results by Pappus of Alexandria has survived. Three given circles generically have eight different circles that are tangent to them (Figure 2), a pair of solutions for each way to divide the three given circles in two subsets.

<span class="mw-page-title-main">Isodynamic point</span> 2 points about which a triangle can be inverted into an equilateral triangle

In Euclidean geometry, the isodynamic points of a triangle are points associated with the triangle, with the properties that an inversion centered at one of these points transforms the given triangle into an equilateral triangle, and that the distances from the isodynamic point to the triangle vertices are inversely proportional to the opposite side lengths of the triangle. Triangles that are similar to each other have isodynamic points in corresponding locations in the plane, so the isodynamic points are triangle centers, and unlike other triangle centers the isodynamic points are also invariant under Möbius transformations. A triangle that is itself equilateral has a unique isodynamic point, at its centroid(as well as its orthocenter, its incenter, and its circumcenter, which are concurrent); every non-equilateral triangle has two isodynamic points. Isodynamic points were first studied and named by Joseph Neuberg.

Geometry is a branch of mathematics concerned with questions of shape, size, relative position of figures, and the properties of space. Geometry is one of the oldest mathematical sciences.

In geometry, a generalized circle, sometimes called a cline or circline, is a straight line or a circle, the curves of constant curvature in the Euclidean plane.

<span class="mw-page-title-main">Lie sphere geometry</span> Geometry founded on spheres

Lie sphere geometry is a geometrical theory of planar or spatial geometry in which the fundamental concept is the circle or sphere. It was introduced by Sophus Lie in the nineteenth century. The main idea which leads to Lie sphere geometry is that lines should be regarded as circles of infinite radius and that points in the plane should be regarded as circles of zero radius.

<span class="mw-page-title-main">Circle packing theorem</span> Describes the possible tangency relations between circles with disjoint interiors

The circle packing theorem describes the possible tangency relations between circles in the plane whose interiors are disjoint. A circle packing is a connected collection of circles whose interiors are disjoint. The intersection graph of a circle packing is the graph having a vertex for each circle, and an edge for every pair of circles that are tangent. If the circle packing is on the plane, or, equivalently, on the sphere, then its intersection graph is called a coin graph; more generally, intersection graphs of interior-disjoint geometric objects are called tangency graphs or contact graphs. Coin graphs are always connected, simple, and planar. The circle packing theorem states that these are the only requirements for a graph to be a coin graph:

In mathematics, a Benz plane is a type of 2-dimensional geometrical structure, named after the German mathematician Walter Benz. The term was applied to a group of objects that arise from a common axiomatization of certain structures and split into three families, which were introduced separately: Möbius planes, Laguerre planes, and Minkowski planes.

In inversive geometry, the inversive distance is a way of measuring the "distance" between two circles, regardless of whether the circles cross each other, are tangent to each other, or are disjoint from each other.

<span class="mw-page-title-main">Conic section</span> Curve from a cone intersecting a plane

A conic section, conic or a quadratic curve is a curve obtained from a cone's surface intersecting a plane. The three types of conic section are the hyperbola, the parabola, and the ellipse; the circle is a special case of the ellipse, though it was sometimes called as a fourth type. The ancient Greek mathematicians studied conic sections, culminating around 200 BC with Apollonius of Perga's systematic work on their properties.

In mathematics, the classical Möbius plane is the Euclidean plane supplemented by a single point at infinity. It is also called the inversive plane because it is closed under inversion with respect to any generalized circle, and thus a natural setting for planar inversive geometry.

<span class="mw-page-title-main">Bundle theorem</span>

In Euclidean geometry, the bundle theorem is a statement about six circles and eight points in the Euclidean plane. In general incidence geometry, it is a similar property that a Möbius plane may or may not satisfy. According to Kahn's Theorem, it is fulfilled by "ovoidal" Möbius planes only; thus, it is the analog for Möbius planes of Desargues' Theorem for projective planes.

<span class="mw-page-title-main">Constructions in hyperbolic geometry</span>

Hyperbolic geometry is a non-Euclidean geometry where the first four axioms of Euclidean geometry are kept but the fifth axiom, the parallel postulate, is changed. The fifth axiom of hyperbolic geometry says that given a line L and a point P not on that line, there are at least two lines passing through P that are parallel to L. As in Euclidean geometry, where ancient Greek mathematicians used a compass and idealized ruler for constructions of lengths, angles, and other geometric figures, constructions can also be made in hyperbolic geometry.

References

  1. 1 2 3 4 5 6 Bieberbach, Ludwig, "Review of A Treatise on the Circle and the Sphere (1916 edition)", Jahrbuch über die Fortschritte der Mathematik, JFM   46.0921.02
  2. 1 2 3 4 5 H. P. H. (December 1916), "Review of A Treatise on the Circle and the Sphere (1916 edition)", The Mathematical Gazette, 8 (126): 338–339, doi:10.2307/3602790, hdl: 2027/coo1.ark:/13960/t39z9q113 , JSTOR   3602790
  3. 1 2 3 4 5 6 7 8 9 Emch, Arnold (June 1917), "Review of A Treatise on the Circle and the Sphere (1916 edition)", The American Mathematical Monthly, 24 (6): 276–279, doi:10.1080/00029890.1917.11998325, JSTOR   2973184
  4. 1 2 3 White, H. S. (July 1919), "Circle and sphere geometry (Review of A Treatise on the Circle and the Sphere)", Bulletin of the American Mathematical Society, 25 (10), American Mathematical Society ({AMS}): 464–468, doi: 10.1090/s0002-9904-1919-03230-3
  5. 1 2 3 "Review of A Treatise on the Circle and the Sphere (1971 reprint)", Mathematical Reviews, MR   0389515
  6. 1 2 Peak, Philip (May 1974), "Review of A Treatise on the Circle and the Sphere (1971 reprint)", The Mathematics Teacher, 67 (5): 445, JSTOR   27959760
  7. 1 2 3 Steinke, G. F., "Review of A Treatise on the Circle and the Sphere (1997 reprint)", zbMATH, Zbl   0913.51004