Acholeplasma laidlawii

Last updated

Acholeplasma laidlawii
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Mycoplasmatota
Class: Mollicutes
Order: Acholeplasmatales
Family: Acholeplasmataceae
Genus: Acholeplasma
Species:
A. laidlawii
Binomial name
Acholeplasma laidlawii
(Sabin 1941) Edward and Freundt 1970 [1]

Acholeplasma laidlawii are small bacteria which lack a cell wall. [2] Like other Acholeplasma and Mycoplasma, A. laidlawii has been identified as a common contaminant of growth media for cell culture. [3]

Contents

History

A. laidlawii was first isolated from sewage in London in 1936 and was named after its discoverer, Patrick Laidlaw. [4]

Genetics

A. laidlawii has a relatively small genome comprising 1.5Mbp. Additionally its genome has a low GC-content of just 31%. [2] The A. laidlawii genome has been sequenced. [2]

In Research

Acholeplasma laidlawii may contaminate bovine serum and also occurs in serum-free cell culture media products. The presence of A. laidlawii in broth powders is a serious problem in routine biopharmaceutical operations where filtration is used as a sterilisation procedure. A. laidlawii may flourish and survive for prolonged periods at refrigeration and ambient temperatures in serum-free cell culture media.

Related Research Articles

<span class="mw-page-title-main">Yeast</span> Informal group of fungi

Yeasts are eukaryotic, single-celled microorganisms classified as members of the fungus kingdom. The first yeast originated hundreds of millions of years ago, and at least 1,500 species are currently recognized. They are estimated to constitute 1% of all described fungal species.

<i>Escherichia coli</i> Enteric, rod-shaped, gram-negative bacterium

Escherichia coli ( ESH-ə-RIK-ee-ə KOH-ly) is a Gram-negative, facultative anaerobic, rod-shaped, coliform bacterium of the genus Escherichia that is commonly found in the lower intestine of warm-blooded organisms. Most E. coli strains are harmless, but some serotypes such as EPEC, and ETEC are pathogenic and can cause serious food poisoning in their hosts, and are occasionally responsible for food contamination incidents that prompt product recalls. Most strains are part of the normal microbiota of the gut and are harmless or even beneficial to humans (although these strains tend to be less studied than the pathogenic ones). For example, some strains of E. coli benefit their hosts by producing vitamin K2 or by preventing the colonization of the intestine by pathogenic bacteria. These mutually beneficial relationships between E. coli and humans are a type of mutualistic biological relationship — where both the humans and the E. coli are benefitting each other. E. coli is expelled into the environment within fecal matter. The bacterium grows massively in fresh fecal matter under aerobic conditions for three days, but its numbers decline slowly afterwards.

<span class="mw-page-title-main">Protein production</span>

Protein production is the biotechnological process of generating a specific protein. It is typically achieved by the manipulation of gene expression in an organism such that it expresses large amounts of a recombinant gene. This includes the transcription of the recombinant DNA to messenger RNA (mRNA), the translation of mRNA into polypeptide chains, which are ultimately folded into functional proteins and may be targeted to specific subcellular or extracellular locations.

<span class="mw-page-title-main">Serum (blood)</span> Fluid and solute component of blood

Serum is the fluid and solute component of blood which does not play a role in clotting. It may be defined as blood plasma without the clotting factors, or as blood with all cells and clotting factors removed. Serum includes all proteins not used in blood clotting; all electrolytes, antibodies, antigens, hormones; and any exogenous substances. Serum does not contain white blood cells (leukocytes), red blood cells (erythrocytes), platelets, or clotting factors.

<span class="mw-page-title-main">Chinese hamster ovary cell</span>

Chinese hamster ovary (CHO) cells are an epithelial cell line derived from the ovary of the Chinese hamster, often used in biological and medical research and commercially in the production of recombinant therapeutic proteins. They have found wide use in studies of genetics, toxicity screening, nutrition and gene expression, particularly to express recombinant proteins. CHO cells are the most commonly used mammalian hosts for industrial production of recombinant protein therapeutics.

<i>Chlamydomonas reinhardtii</i> Species of alga

Chlamydomonas reinhardtii is a single-cell green alga about 10 micrometres in diameter that swims with two flagella. It has a cell wall made of hydroxyproline-rich glycoproteins, a large cup-shaped chloroplast, a large pyrenoid, and an eyespot that senses light.

<i>Lactobacillus acidophilus</i> Species of bacterium

Lactobacillus acidophilus is a rod-shaped, Gram-positive, homofermentative, anaerobic microbe first isolated from infant feces in the year 1900. The species is most commonly found in humans, specifically the gastrointestinal tract, oral cavity, and vagina, as well as various fermented foods such as fermented milk or yogurt. The species most readily grows at low pH levels, and has an optimum growth temperature of 37 °C. Certain strains of L. acidophilus show strong probiotic effects, and are commercially used in dairy production. The genome of L. acidophilus has been sequenced.

<span class="mw-page-title-main">Cell culture</span> Process by which cells are grown under controlled conditions

Cell culture or tissue culture is the process by which cells are grown under controlled conditions, generally outside of their natural environment. The term "tissue culture" was coined by American pathologist Montrose Thomas Burrows. This technique is also called micropropagation. After the cells of interest have been isolated from living tissue, they can subsequently be maintained under carefully controlled conditions. They need to be kept at body temperature (37 °C) in an incubator. These conditions vary for each cell type, but generally consist of a suitable vessel with a substrate or rich medium that supplies the essential nutrients (amino acids, carbohydrates, vitamins, minerals), growth factors, hormones, and gases (CO2, O2), and regulates the physio-chemical environment (pH buffer, osmotic pressure, temperature). Most cells require a surface or an artificial substrate to form an adherent culture as a monolayer (one single-cell thick), whereas others can be grown free floating in a medium as a suspension culture. This is typically facilitated via use of a liquid, semi-solid, or solid growth medium, such as broth or agar. Tissue culture commonly refers to the culture of animal cells and tissues, with the more specific term plant tissue culture being used for plants. The lifespan of most cells is genetically determined, but some cell-culturing cells have been “transformed” into immortal cells which will reproduce indefinitely if the optimal conditions are provided.

<span class="mw-page-title-main">Recombinant DNA</span> DNA molecules formed by human agency at a molecular level generating novel DNA sequences

Recombinant DNA (rDNA) molecules are DNA molecules formed by laboratory methods of genetic recombination that bring together genetic material from multiple sources, creating sequences that would not otherwise be found in the genome.

<span class="mw-page-title-main">Acholeplasmataceae</span> Family of bacteria

Acholeplasmataceae is a family of bacteria. It is the only family in the order Acholeplasmatales, placed in the class Mollicutes. The family comprises the genera Acholeplasma and Phytoplasma. Phytoplasma has the candidatus status, because members still could not be cultured.

<i>Acholeplasma</i> Genus of bacteria

Acholeplasma are wall-less bacteria in the Mollicutes class. They include saprotrophic or pathogenic species. There are 15 recognised species. The G+C content is low, ranging from 26 - 36% (mol%). The genomes of Acholeplasma species range in size from 1.5 to 1.65 Mbp. Cholesterol is not required for growth. The species are found on animals, and some plants and insects. The optimum growth temperature is 30 to 37 degrees Celsius.

Fetal bovine serum (FBS) is derived from the blood drawn from a bovine fetus via a closed system of collection at the slaughterhouse. Fetal bovine serum is the most widely used serum-supplement for the in vitro cell culture of eukaryotic cells. This is due to it having a very low level of antibodies and containing more growth factors, allowing for versatility in many different cell culture applications.

A biopharmaceutical, also known as a biological medical product, or biologic, is any pharmaceutical drug product manufactured in, extracted from, or semisynthesized from biological sources. Different from totally synthesized pharmaceuticals, they include vaccines, whole blood, blood components, allergenics, somatic cells, gene therapies, tissues, recombinant therapeutic protein, and living medicines used in cell therapy. Biologics can be composed of sugars, proteins, nucleic acids, or complex combinations of these substances, or may be living cells or tissues. They are isolated from living sources—human, animal, plant, fungal, or microbial. They can be used in both human and animal medicine.

Industrial fermentation is the intentional use of fermentation in manufacturing processes. In addition to the mass production of fermented foods and drinks, industrial fermentation has widespread applications in chemical industry. Commodity chemicals, such as acetic acid, citric acid, and ethanol are made by fermentation. Moreover, nearly all commercially produced industrial enzymes, such as lipase, invertase and rennet, are made by fermentation with genetically modified microbes. In some cases, production of biomass itself is the objective, as is the case for single-cell proteins, baker's yeast, and starter cultures for lactic acid bacteria used in cheesemaking.

<span class="mw-page-title-main">Leukemia inhibitory factor</span> Mammalian protein found in Homo sapiens

Leukemia inhibitory factor, or LIF, is an interleukin 6 class cytokine that affects cell growth by inhibiting differentiation. When LIF levels drop, the cells differentiate.

Drosophila X virus (DXV) belongs to the Birnaviridae family of viruses. Birnaviridae currently consists of three genera. The first genus is Entomobirnavirus, which contains DXV. The next genus is Aquabirnavirus, containing infectious pancreatic necrosis virus (IPNV). The last genus is Avibirnavirus, which contains infectious bursal disease virus (IBDV). All of these genera contain homology in three specific areas of their transcripts. The homology comes from the amino and carboxyl regions of preVP2, a small 21-residue-long domain near the carboxyl terminal of VP3, and similar small ORFs sequences.

A chemically defined medium is a growth medium suitable for the in vitro cell culture of human or animal cells in which all of the chemical components are known. Standard cell culture media commonly consist of a basal medium supplemented with animal serum as a source of nutrients and other ill-defined factors. The technical disadvantages to using serum include its undefined nature, batch-to-batch variability in composition, and the risk of contamination.

<span class="mw-page-title-main">Moss bioreactor</span>

A moss bioreactor is a photobioreactor used for the cultivation and propagation of mosses. It is usually used in molecular farming for the production of recombinant protein using transgenic moss. In environmental science moss bioreactors are used to multiply peat mosses e.g. by the Mossclone consortium to monitor air pollution.

Secretomics is a type of proteomics which involves the analysis of the secretome—all the secreted proteins of a cell, tissue or organism. Secreted proteins are involved in a variety of physiological processes, including cell signaling and matrix remodeling, but are also integral to invasion and metastasis of malignant cells. Secretomics has thus been especially important in the discovery of biomarkers for cancer and understanding molecular basis of pathogenesis. The analysis of the insoluble fraction of the secretome has been termed matrisomics.

Host cell proteins (HCPs) are process-related protein impurities that are produced by the host organism during biotherapeutic manufacturing and production. During the purification process, a majority of produced HCPs are removed from the final product. However, residual HCPs still remain in the final distributed pharmaceutical drug. Examples of HCPs that may remain in the desired pharmaceutical product include: monoclonal antibodies (mAbs), antibody-drug-conjugates (ADCs), therapeutic proteins, vaccines, and other protein-based biopharmaceuticals.

References

  1. Parte, A.C. "Acholeplasma". LPSN .
  2. 1 2 3 Lazarev VN; Levitskii SA; Basovskii YL; Chukin MM; Akopian TA; et al. (September 2011). "Complete genome and Proteome of Acholeplasma laidlawii". J. Bacteriol. 193 (18): 4943–4953. doi:10.1128/jb.05059-11. PMC   3165704 . PMID   21784942.
  3. Windsor HM; Windsor GD; Noordergraaf JH (March 2010). "The growth and long term survival of Acholeplasma laidlawii in media products used in biopharmaceutical manufacturing". Biologicals. 38 (2): 204–210. doi:10.1016/j.biologicals.2009.11.009. PMID   20153666.
  4. Laidlaw PP; Elford WJ (2 June 1936). "A New Group of Filterable Organisms". Proceedings of the Royal Society of London. 120 (818): 292–303. doi:10.1098/rspb.1936.0036. JSTOR   82051.