Advanced Technology Demonstrator

Last updated
Advanced Technology Demonstrator
Advanced Technology Demonstrator radar antenna installation.jpg
ATD Installation, 2018
Country of originUS
Introduced2018
No. built1
Type Weather radar
Frequency2.7 GHz (S-Band)
Beamwidth Nominal 1.3°
PulsewidthAdjustable; Pulse Compressed
RPMVariable – mechanically and electronically steered
Diameter4.3 m (14 ft)
Azimuth 360°

Advanced Technology Demonstrator (ATD) is an experimental weather radar system using Phased Array technology seeking to enhance Phased Array capabilities with the addition of dual-polarity and pulse compression. [1] Its predecessor, MPAR, was the first large-scale PAR experiment taken on by NOAA in 2003, and was deployed until its eventual decommission in favor of ATD in 2016. [2]

Contents

Future radar networks – such as the successor to NEXRAD, and possibly across multiple disciplines external to meteorology, such as Air traffic control [3] – are planned to utilize PAR technology due to its superior temporal volumetric capabilities. [4]

History

By and large, meteorological monitoring is done operationally by relatively legacy weather radar systems – in the United States, the NEXRAD network has been the primary weather radar network since the early 1990s. For the first 20 years of operations, its data output was, in comparison to modern schemes, considerably more modest. All systems were single-polarity and doppler capable, but were comparatively limited in their resolution until the advent of super-resolution in 2008 (which effectively quadrupled spatial resolution, and doubled azimuthal resolution). [5]

Perhaps the most important hardware upgrade to the NEXRAD system came with the introduction of dual-polarization capabilities [6] in 2011. This upgrade allowed all systems to decipher microphysical properties not previously visible to a single beam polarity. This ability allows distinction between hydrometeor types, can be used to extrapolate rain rates, and is often utilized to detect debris during tornadic events. Combined with the introduction of faster scanning strategies, such as MESO-SAILS, NEXRAD was proven to be an extremely valuable and highly necessary tool for severe weather monitoring and asset protection across the United States.

The primary disadvantage to these more legacy systems, however, is the timeliness – even with the advent of advanced scanning strategies, typical volume times still take on the order or 5–7 minutes to complete. Aforementioned rapid-scan strategies bring low-level data times down to 2–3 minutes, but sacrifice full-volume timeliness instead. [7] To combat the issue of limited temporal resolution, NOAA and NSSL began research into the viability of PAR technology beginning with MPAR in 2003, and lasting until 2016.

Deployment

The Advanced Technology Demonstrator flat panel antenna Advanced Technology Demonstrator radar antenna array 02.jpg
The Advanced Technology Demonstrator flat panel antenna

Following the decommissioning of its predecessor, ATD was installed in Norman, Oklahoma on 12 July 2018. [8] MIT Lincoln Laboratory was the head design group for ATD. Like MPAR and NEXRAD, the ATD radar operates in the S-band, itself utilizing a flat panel phased array with a 90° field of view. The overall panel is actually composed of 76 square panels, each with 64 radiating elements (in total some 4,864 elements) arranged on a 14-foot (4.3 m) antenna. [9]

ATD seeks to improve upon the work originally done by MPAR – for example, MPAR laid the groundwork for rapid-volumetric scanning abilities, but was dramatically limited in its operational prospects by the difficulty of integrating orthogonal waveforms into schemes involving electronic beam steering. This problem with dual-polarity persists, but is among the foundational research directives of ATD, being among the first large-scale, dual-polarimetric PAR systems internationally. [10] As of 2023, research is ongoing as to the viability of future radar networks utilizing technology similar to ATD.

See also

Related Research Articles

<span class="mw-page-title-main">NEXRAD</span> Network of weather radars operated by the NWS

NEXRAD or Nexrad is a network of 159 high-resolution S-band Doppler weather radars operated by the National Weather Service (NWS), an agency of the National Oceanic and Atmospheric Administration (NOAA) within the United States Department of Commerce, the Federal Aviation Administration (FAA) within the Department of Transportation, and the U.S. Air Force within the Department of Defense. Its technical name is WSR-88D.

<span class="mw-page-title-main">Weather radar</span> Radar used to locate and monitor meteorological conditions

Weather radar, also called weather surveillance radar (WSR) and Doppler weather radar, is a type of radar used to locate precipitation, calculate its motion, and estimate its type. Modern weather radars are mostly pulse-Doppler radars, capable of detecting the motion of rain droplets in addition to the intensity of the precipitation. Both types of data can be analyzed to determine the structure of storms and their potential to cause severe weather.

The National Severe Storms Laboratory (NSSL) is a National Oceanic and Atmospheric Administration (NOAA) weather research laboratory under the Office of Oceanic and Atmospheric Research. It is one of seven NOAA Research Laboratories (RLs).

The Center for Analysis and Prediction of Storms (CAPS) was established at the University of Oklahoma in 1989 as one of the first eleven National Science Foundation Science and Technology Centers. Located at the National Weather Center in Norman, Oklahoma, its mission is the development of techniques for the computer-based prediction of high-impact local weather, such as individual spring and winter storms, with the NEXRAD (WSR-88D) Doppler weather radar serving as a key data source.

<span class="mw-page-title-main">ARMOR Doppler Weather Radar</span>

ARMOR Doppler weather radar is a C-Band, Dual-Polarimetric Doppler Weather Radar, located at the Huntsville International Airport in Huntsville, Alabama. The radar is a collaborative effort between WHNT-TV and the University of Alabama in Huntsville. Live data for the radar is only available to a limited audience, such as UAH employees and NWS meteorologists. All ARMOR data is archived at the National Space Science and Technology Center located on the UAH campus.

<span class="mw-page-title-main">Doppler on Wheels</span> Fleet of X-band radar trucks maintained by the Center for Severe Weather Research (CSWR)

Doppler on Wheels is a fleet of X-band and C-band radar mobile and quickly-deployable truck-borne radars which are the core instrumentation of the Flexible Array of Radars and Mesonets affiliated with the University of Illinois and led by Joshua Wurman, with the funding partially provided by the National Science Foundation (NSF). The DOW fleet and its associated Mobile Mesonets and deployable weather stations Doppler on Wheels (DOW) has been deploying in hazardous/challenging weather, driving into the eye of the storm to gather scientific data about wind, rain and snow that are missed by stationary radar systems. They are part of the NSF's "Community Instruments and Facilities" (CIF) program.

Convective storm detection is the meteorological observation, and short-term prediction, of deep moist convection (DMC). DMC describes atmospheric conditions producing single or clusters of large vertical extension clouds ranging from cumulus congestus to cumulonimbus, the latter producing thunderstorms associated with lightning and thunder. Those two types of clouds can produce severe weather at the surface and aloft.

<span class="mw-page-title-main">VORTEX projects</span> Field experiments that study tornadoes

The Verification of the Origins of Rotation in Tornadoes Experiment are field experiments that study tornadoes. VORTEX1 was the first time scientists completely researched the entire evolution of a tornado with an array of instrumentation, enabling a greater understanding of the processes involved with tornadogenesis. A violent tornado near Union City, Oklahoma was documented in its entirety by chasers of the Tornado Intercept Project (TIP) in 1973. Their visual observations led to advancement in understanding of tornado structure and life cycles.

<span class="mw-page-title-main">Terminal Doppler Weather Radar</span>

Terminal Doppler Weather Radar (TDWR) is a Doppler weather radar system with a three-dimensional "pencil beam" used primarily for the detection of hazardous wind shear conditions, precipitation, and winds aloft on and near major airports situated in climates with great exposure to thunderstorms in the United States. As of 2011, all were in-service with 45 operational radars, some covering multiple airports in major metropolitan locations, across the United States & Puerto Rico. Several similar weather radars have also been sold to other countries such as China (Hong Kong). Funded by the United States Federal Aviation Administration (FAA), TDWR technology was developed in the early 1990s at Lincoln Laboratory, part of the Massachusetts Institute of Technology, to assist air traffic controllers by providing real-time wind shear detection and high-resolution precipitation data.

<span class="mw-page-title-main">European Severe Storms Laboratory</span>

The European Severe Storms Laboratory (ESSL) is a scientific organisation that conducts research on severe convective storms, tornadoes, intense precipitation events, and avalanches across Europe and the Mediterranean. It operates the widely consulted European Severe Weather Database (ESWD).

<span class="mw-page-title-main">Donald W. Burgess</span> American meteorologist

Donald W. Burgess is an American meteorologist who has made important contributions to understanding of severe convective storms, particularly tornadoes, radar observations and techniques, as well as to training other meteorologists. He was a radar operator during the first organized storm chasing expeditions by the University of Oklahoma (OU) in the early 1970s and participated in both the VORTEX projects.

<span class="mw-page-title-main">Radar Operations Center</span>

The Radar Operations Center (ROC) is a National Weather Service (NWS) unit that coordinates the development, maintenance, and training for the NEXRAD weather radar network. It is located near the University of Oklahoma Westheimer Airport in Norman, Oklahoma and run by the National Oceanic and Atmospheric Administration (NOAA) in the Department of Commerce with partners at the Department of Defense and the Department of Transportation.

<span class="mw-page-title-main">NSSL Doppler</span>

NOAA's 10 cm Doppler Weather Radar was a 10 cm wavelength S-band Doppler Weather Radar commonly referred to as NSSL Doppler, and was used to track severe weather and related meteorological phenomena. The radar became operational soon after its donation, collecting its first data in May 1971. Data was collected on magnetic tapes and processed on a NASA computer post event due to the lack of real-time capability at the time.

<span class="mw-page-title-main">Multifunction Phased Array Radar</span>

Multifunction Phased Array Radar (MPAR) was an experimental Doppler radar system that utilized phased array technology. MPAR could scan at angles as high as 60 degrees in elevation, and simultaneously track meteorological phenomena, biological flyers, non-cooperative aircraft, and air traffic. From 2003 through 2016, there was one operational MPAR within the mainland United States—a repurposed AN/SPY-1A radar set loaned to NOAA by the U.S. Navy. The MPAR was decommissioned and removed in 2016.

<span class="mw-page-title-main">Joint Polarization Experiment</span>

The Joint Polarization Experiment (JPOLE) was a test for evaluating the performance of the WSR-88D in order to modify it to include dual polarization. This program was a joint project of the National Weather Service (NWS), the Federal Aviation Administration (FAA), and the US Air Force Meteorological Agency (AFWA), which took place from 2000-2004. It has resulted in the upgrading of the entire meteorological radar network in the United States by adding dual polarization to better determine the type of hydrometeor, and quantities that have fallen.

<span class="mw-page-title-main">Roger Lhermitte</span> French meteorologist pioneer of the Doppler weather radar

Roger M. Lhermitte was a French meteorologist who "pioneered the development of meteorological Doppler radar." His career extended from the 1950s until his death where he made numerous contributions to the field of radar meteorology resulting in over 100 publications and numerous patents.

<span class="mw-page-title-main">Jeff Kimpel</span> American meteorologist (1942–2020)

James F. "Jeff" Kimpel was an American atmospheric scientist with expertise on severe storms who was a provost of the University of Oklahoma (OU) and director of the National Severe Storms Laboratory (NSSL).

<span class="mw-page-title-main">RaXPol</span>

The RapidX-bandPolarimetric Radar, commonly abbreviated as RaXPol, is a mobile research radar designed and operated by the University of Oklahoma, led by Howard Bluestein. RaXPol often collaborates with adjacent mobile radar projects, such as Doppler on Wheels and SMART-R. Unlike its counterparts, RaXPol typically places emphasis on temporal resolution, and as such is capable of surveilling the entire local atmosphere in three dimensions in as little as 20 seconds, or a single level in less than 3 seconds.

<span class="mw-page-title-main">Dusan S. Zrnic</span> American engineer and weather radar pioneer

Dušan S. Zrnić is an American engineer of Yugoslav origin, head of the Doppler Weather Radar and Remote Sensing Research Group at the National Severe Storms Laboratory (NSSL) as well as assistant professor of electrical engineering and meteorology at the University of Oklahoma in Norman, Oklahoma. His research interests include circuit design, applied mathematics, magnetohydrodynamics, radar signal processing, and systems design.

<span class="mw-page-title-main">Richard Doviak</span> American engineer and radar pioneer

Richard James Doviak was an American engineer and university professor, pioneer of weather radar. He worked for the National Oceanic and Atmospheric Administration at the National Severe Storms Laboratory developing the NEXRAD radar array using reflectivity, the Doppler effect and the dual polarization to detect precipitation and its movement in clouds. He is also the co-author with Dusan S. Zrnic of the reference book “Doppler Radar and Weather Observations” about modern weather radar and its use.

References

  1. "Advanced Technology Demonstrator". NOAA National Severe Storms Laboratory.
  2. "NWRT: End of an Era". NOAA National Severe Storms Laboratory.
  3. https://www.ll.mit.edu/sites/default/files/publication/doc/2022-03/MITLL_50th_ATC_Book_Web_Rev2.pdf
  4. https://samdaily.us/archive/2022/02-February/05-Feb-2022/FBO-06233074.htm
  5. "Dr. Sebastian Torres". cimms.ou.edu.
  6. https://www.roc.noaa.gov/WSR88D/PublicDocs/DualPol/DPstatus.pdf
  7. https://par.nsf.gov/servlets/purl/10320169
  8. "New Advanced Technology Radar Installed at National Severe Storms Laboratory". WeatherNation. October 22, 2018.
  9. Palmer, Robert; Bodine, David; Kollias, Pavlos; Schvartzman, David; Zrnić, Dusan; Kirstetter, Pierre; Zhang, Guifu; Yu, Tian-You; Kumjian, Matthew; Cheong, Boonleng; Collis, Scott; Frasier, Stephen; Fulton, Caleb; Hondl, Kurt; Kurdzo, James; Ushio, Tomoo; Rowe, Angela; Salazar-Cerrenˉo, Jorge; Torres, Sebastián; Weber, Mark; Yeary, Mark (2022). "A Primer on Phased Array Radar Technology for the Atmospheric Sciences". Bulletin of the American Meteorological Society. 103 (10): E2391–E2416. Bibcode:2022BAMS..103E2391P. doi:10.1175/BAMS-D-21-0172.1.
  10. https://www.nssl.noaa.gov/publications/par_reports/Preliminary%20Report%20on%20Polarimetric%20Calibration%20for%20the%20Advanced%20Technology%20Demonstrator.pdf