Allied technological cooperation during World War II

Last updated

The Allies of World War II cooperated extensively in the development and manufacture of new and existing technologies to support military operations and intelligence gathering during the Second World War. There are various ways in which the allies cooperated, including the American Lend-Lease scheme and hybrid weapons such as the Sherman Firefly as well as the British Tube Alloys nuclear weapons research project which was absorbed into the American-led Manhattan Project. Several technologies invented in Britain proved critical to the military and were widely manufactured by the Allies during the Second World War. [1] [2] [3]

Contents

Tizard Mission

The origin of the cooperation stemmed from a 1940 visit by the Aeronautical Research Committee chairman Henry Tizard, during which Tizard arranged to transfer UK military technology to the US in the event that Hitler's planned invasion of the UK should succeed. Tizard led a British technical mission, known as the Tizard Mission, containing details and examples of British technological developments in fields such as radar, jet propulsion and also the early British research into the atomic bomb. One of the devices brought to the US by the Mission, the resonant cavity magnetron, was later described as "the most valuable cargo ever brought to our shores". [4]

Small arms

Small arms began to be shared after the fall of France, most of the 'sharing' being one sided as America was not yet directly involved in the conflict and thus all the movement was from the United States to the United Kingdom. In the months following Operation Dynamo, as British manufacturers progressed in building replacements for the materiel lost by the British Army in France, the British government looked overseas for additional sources of equipment to assist in overcoming shortages and prepare for future offensives. The most extreme example of the shortages were found in the quickly improvised Local Defence Volunteers, later renamed the Home Guard, who were forced to train with broom handles and makeshift pikes using lengths of piping and old bayonets until weapons could be supplied.

In addition to those produced in Britain, small arms and ammunition were obtained from Commonwealth countries and also purchased from U.S. manufacturers until they were supplied under Lend-Lease beginning in 1941. The weapons obtained from the United States included the Tommy gun, M1911A1 pistol and the M1917 revolver produced by Colt and Smith & Wesson, all primarily produced in .45 ACP. The Home Guard received the Browning .30 machine gun, the M1918 .30 BAR and the P17 .30 Enfield rifle. M1917 Enfield rifles chambered for .303 British were also provided by the U.S. while all .30-caliber U.S. rifles, BARs and machine guns were chambered for .30-06 Springfield

Later, the M1919 .30 machine gun and the M2HB .50 machine gun chambered in .50 BMG were provided by the U.S. for infantry and anti-aircraft use. Browning AN2 light machine guns in .303 British caliber were already in standard use on British aircraft beginning in the late 1930s.

Britain supplied small arms to the USSR, and the 9mm Sten submachine gun was supplied to Soviet partisan troops[ citation needed ].

Artillery

The British made use of many American towed artillery pieces during the war, such as the M2 105 mm howitzers, M1A1 75mm Pack Howitzers, 155 mm guns (Long Toms). These weapons were supplied under Lend-Lease or bought outright. Tank/tank destroyer guns used by the British included the 37 mm M5/M6 Gun (General Stuart and General Grant/Lee tanks), 75mm M2 Gun (General Grant/Lee), 75 mm M3 Gun (General Grant/Lee and General Sherman), 76 mm Gun M1 (General Sherman) and 3" Gun M7 (3in SP M10).

The Americans in turn used a British artillery piece, the Ordnance QF 6-pounder 7cwt anti-tank gun. The US realized at the start of the war that their own 37 mm Gun M3 would soon be obsolete and thus they produced a license built version of the QF 6-pounder under the designation 57 mm Gun M1.

Both 76 mm and 75 mm guns were mounted on tanks sent to the Soviets by the US, while the British tanks sent were armed with both the Ordnance QF 2-pounder and the Ordnance QF 6-pounder.

Another technology taken to the US, by Henry Tizard, for further development and mass production, was the (radio-frequency) proximity fuse. It was five times as effective as contact or timed fuzes and was devastating in naval use against Japanese aircraft and so effective against German ground troops that General George S. Patton said it "won the Battle of the Bulge for us." [5]

Tanks and other vehicles

The Medium Tank M4 was used in all theatres of the Second World War. It had a versatile reliable design and was easy to produce, thus huge numbers were made and provided to both Britain and the USSR by the United States under Lend-Lease. Despite official opinions, the Medium Tank M4 was well liked by some Soviet tankers, while others called it the best tank for peacetime service.[ citation needed ] When Britain received the tank, it was given the designation Sherman, as part of the UK practice of naming its US-built tanks after American Civil War generals. Both the British and the Soviets re-armed their M4s with their own tank guns. The Soviets re-armed a small number with the standard 76 mm F-34 tank gun but so much 75 mm ammunition was supplied by the US that the conversions were not widespread. Unfortunately, the fairly short-barreled 75mm gun most Shermans came equipped with did not offer very good armor penetration even with specialty ammunition, especially against the then-new Panther and Tiger. However, the British 76.2mm (3-inch) Ordnance QF 17-pounder, one of the best anti-tank guns of the period could be fitted in the Sherman's turret with modifications to the gun, a new gun mantlet and welding a bustle to the turret rear; this modification was known as the Firefly. The combination of British and American weaponry proved desirable, although despite the United States building a few 17-pounder Fireflies from new, it never went into mass production and did not see action. The US had its own 76 mm calibre long-barrel gun for the Sherman. While it wasn't as good as the 17-pounder, it still had a much better chance of successfully engaging German heavy tanks especially at close range, offered consistent kill-power against more equally-matched opponents at all ranges, and didn't require major modification to fit like the 17-pounder did. The Firefly thus remained a British variant of the Sherman. The M10 Tank Destroyer was also up-gunned with the 17-pounder, creating the M10C tank destroyer, sometimes known as "Achilles". This was used in accordance with British tactical doctrine for tank destroyers, in that they were considered self-propelled anti-tank guns rather than aggressive 'tank hunters'. Used in this fashion, it proved an effective weapon.

The British also used the Sherman hull for two other Sherman variants known as the Crab, a mine flailing tank, and the DD Sherman, the 'DD' (Duplex Drive) The DD was an amphibious tank. A flotation screen gave buoyancy and two propellers powered by the tank's engine gave propulsion in the water. On reaching land the screens could be dropped and the tank could fight in the normal manner. The DD, another key example of combining technologies, was used by both British and American forces during Operation Overlord. The DD had impressed US General Dwight D. Eisenhower during demonstrations and was readily accepted by the Americans. The Americans did not accept the Sherman Crab, which could have assisted combat engineers with clearing mines under fire, protected by armour. Armoured recovery vehicles (ARVs) were also converted from Shermans by the British as well as the specialist BARV (Beach Armoured Recovery Vehicle) designed to push-off landing craft and salvage vehicles which would otherwise have been lost.

The British supplied tanks to the USSR in the form of the Matilda, Valentine and Churchill infantry tanks. Soviet tank soldiers liked the Valentine for its reliability, cross country performance and low silhouette. The Soviet's opinion of the Matilda and Churchill was less favourable as a result of their weak 40-mm guns (without HE shells) and inability to operate in harsh rasputitsa , winter and offroad conditions.[ citation needed ]

Deliveries of M3 Half-tracks from the US to the Soviet Union were a significant benefit to mechanized Red Army units. Soviet industry produced few armoured personnel carriers, so Lend-Lease American vehicles were in great demand for fast movement of troops in front-line conditions. While M3s had only limited protection, common trucks had no protection at all. In addition, a large part of the Red Army truck fleet was American Studebakers, which were highly regarded by Soviet drivers. After the war, Soviet designers paid a lot of attention to create their own 6x6 army truck and the Studebaker was the template for this development.

In 1942, a T-34 and a KV-1 tank were sent by the Soviet Union to the US where they were evaluated at the Aberdeen Proving Ground. Another T-34 was sent to the British. [6]

Aircraft

RAF Mustang III being serviced in France, 1944 Royal Air Force- 2nd Tactical Air Force, 1943-1945. CL571.jpg
RAF Mustang III being serviced in France, 1944
A former Soviet P-39 in a museum display Bell P-39N Airacobra, Russia - Air Force AN2263404.jpg
A former Soviet P-39 in a museum display

Britain supplied Hawker Hurricanes to the Soviet Union early in the Great Patriotic War to help equip the Soviet Air Force against the then technologically superior Luftwaffe. British RAF engineer Frank Whittle travelled to the US in 1942 to help General Electric start jet engine production.

The American P-51 Mustang was originally designed to a British specification for use by the Royal Air Force and entered service with them in 1942, and later versions were built with a Rolls-Royce Merlin aero-engine. This engine was being produced in the United States by Packard as the Packard Merlin. In addition to the British making use of American planes the US also made use of some Supermarine Spitfires both in escorting USAAF 8th Air Force bombers in Europe as well as being the primary fighter of the 12th Air Force in North Africa. In addition Bristol Beaufighter served as night fighters in the Mediterranean, and two squadrons of de Havilland Mosquito equipped the 8th Air Force as its primary photo reconnaissance and chaff deployment aircraft.

The United States supplied several aircraft types to both the Royal Navy and RAF - all three of the U.S. Navy's primary fighters during the war years, the Wildcat, Corsair (with the RN assisting the Americans with preparing the Corsair for U.S. naval carrier service by 1944), and Hellcat also served with the RN's Fleet Air Arm, with the Royal Air Force using a wide range of USAAF types. A wide range of American aircraft designs also went to the Soviet Union's VVS air arm through Lend-Lease, primarily fighters like the P-39 and P-63 used for aerial combat, along with attack and medium bombers like the A-20 and the B-25 being among the more prominent types, both bombers being well suited to the type of lower-altitude strike missions the Soviets had as a top priority.

Radar

The British demonstrated the cavity magnetron to the Americans at RCA, Bell Labs. It was 100 times as powerful than anything they had seen and enabled the development of airborne radar. [7] [8] [9]

Nuclear weapons

In 1942, the British nuclear weapons research had fallen behind US and unable to match US resources, the United Kingdom agreed to merging their work with the American efforts. Around 20 British scientists and technical staff to America, along with their work, which had been carried out under the codename 'Tube Alloys'. The scientists joined the Manhattan Project at Los Alamos, New Mexico, where their work on uranium enrichment was instrumental in jump-starting the project. In addition Britain, was vital in sourcing raw materials for the project, both as the only source in the world of Nickel Powder required to build gaseous diffusers and providing Uranium both from its mine in British Congo as well as contracting a secondary supply from Sweden. [10] [11] [12]

Code-breaking technology

Considerable information was transmitted from the UK to the US during and after WWII relating to code-breaking methods, the codes themselves, cryptoanalyst visits, mechanical and digital devices for speeding code-breaking, etc. When the Atlantic convoys of war material from the US to the UK came under serious threat from U-boats, considerable encouragement and practical help was given by the US to accelerate the development of code-breaking machines. Subsequent co-operation led to significant success in Australia and the far East for breaking encrypted Japanese messages.

Other technologies

Other technologies developed by the British and shared with the Americans and other Allies include ASDIC (sonar), the Bailey bridge, gyro gunsight, jet engine, Liberty ship, RDX, Rhino tank, Torpex, traveling-wave tube, proximity fuze.

Technologies developed by the Americans and shared with the British and Allies include the bazooka, LVT, DUKW, Fido (acoustic torpedo). Canada and the U.S. independently developed and shared the walkie-talkie.

Legacy

The Tizard Mission was the foundation for cooperation in scientific research at institutions within and across the United States, United Kingdom and Canada. [13] [14] [15] [16] [17]

Many Norwegian scientists and technologists took part in British scientific research during the period when Germany occupied Norway between 1940 and 1945. This resulted in the Norwegian Defence Research Establishment, formed in 1946.

After the war ended, the US ended all nuclear co-operation with Britain. However, the demonstration of British Hydrogen bomb, and the launch of Sputnik 1 by the Soviet Union, both in 1957, resulted in the US resuming the wartime co-operation and led to a Mutual Defence Agreement between the two nations in 1958. Under this agreement, American technology was adapted for British nuclear weapons and various fissile materials were exchanged to resolve each other's specific shortages. [10] [18]

Cooperation between British intelligence agencies and the United States Intelligence Community in the post-war period became the cornerstone of Western intelligence gathering and the "Special Relationship" between the United Kingdom and the United States. [19]

Many military inventions during the war found civilian uses.

See also

Related Research Articles

<span class="mw-page-title-main">Tank destroyer</span> Type of armoured fighting vehicle designed to engage and destroy enemy tanks

A tank destroyer, tank hunter or tank killer is a type of armoured fighting vehicle, predominantly intended for anti-tank duties. They are typically armed with a direct fire artillery gun, also known as a self-propelled anti-tank gun, or missile launcher, also called an anti-tank missile carrier. The vehicles are designed specifically to engage and destroy enemy tanks, often with limited operational capacities.

<span class="mw-page-title-main">M4 Sherman</span> American medium tank widely used during World War 2

The M4 Sherman, officially Medium Tank, M4, was the most widely used medium tank by the United States and Western Allies in World War II. The M4 Sherman proved to be reliable, relatively cheap to produce, and available in great numbers. It was also the basis of several other armored fighting vehicles including self-propelled artillery, tank destroyers, and armored recovery vehicles. Tens of thousands were distributed through the Lend-Lease program to the British Commonwealth and Soviet Union. The tank was named by the British after the American Civil War General William Tecumseh Sherman.

<span class="mw-page-title-main">Technology during World War II</span> Role and use of available technology in World War II

Technology played a significant role in World War II. Some of the technologies used during the war were developed during the interwar years of the 1920s and 1930s, much was developed in response to needs and lessons learned during the war, while others were beginning to be developed as the war ended. Many wars have had major effects on the technologies that we use in our daily lives, but World War II had the greatest effect on the technology and devices that are used today. Technology also played a greater role in the conduct of World War II than in any other war in history, and had a critical role in its outcome.

<span class="mw-page-title-main">M3 Lee</span> American medium tank of World War II

The M3 Lee, officially Medium Tank, M3, was an American medium tank used during World War II. The turret was produced in two forms, one for US needs and one modified to British requirements to place the radio next to the commander. In British Commonwealth service, the tank was called by two names: tanks employing US pattern turrets were called "Lee", named after Confederate general Robert E. Lee, while those with British pattern turrets were known as "Grant", named after Union general Ulysses S. Grant.

<span class="mw-page-title-main">Valentine tank</span> British infantry tank

The Tank, Infantry, Mk III, Valentine was an infantry tank produced in the United Kingdom during World War II. More than 8,000 of the type were produced in eleven marks, plus various specialised variants, accounting for approximately a quarter of wartime British tank production. The many variants included riveted and welded construction, petrol and diesel engines and a progressive increase in armament. It was supplied in large numbers to the USSR and built under licence in Canada. It was used extensively by the British in the North African campaign. Developed by Vickers, it proved to be both strong and reliable.

<span class="mw-page-title-main">Archer (tank destroyer)</span> British self-propelled anti-tank gun

The Self Propelled 17pdr, Valentine, Mk I, Archer was a British tank destroyer of the Second World War based on the Valentine infantry tank chassis fitted with an Ordnance QF 17 pounder gun. Designed and manufactured by Vickers-Armstrongs, 655 were produced between March 1943 and May 1945. It was used in north-west Europe and Italy during the war; post-war, it served with the Egyptian Army. This vehicle was unusual in that its gun faced the rear of the chassis instead of the front.

<span class="mw-page-title-main">Cruiser Mk VIII Challenger</span> British WWII cruiser tank

The Tank, Cruiser, Challenger (A30) was a British tank of World War II. It mounted the QF 17-pounder anti-tank gun on a chassis derived from the Cromwell tank to add anti-tank firepower to the cruiser tank units. The design compromises made in fitting the large gun onto the Cromwell chassis resulted in a tank with a powerful weapon and reduced armour. However, the extemporised 17-pounder Sherman Firefly conversion of the US-supplied Sherman proved easier to produce and, with delays in production, only 200 Challengers were built. The Challenger was able to keep up with the fast Cromwell tank and was used with them.

<span class="mw-page-title-main">Ordnance QF 17-pounder</span> Anti-tank gun and tank gun

The Ordnance Quick-Firing 17-pounder was a 76.2 mm (3 inch) gun developed by the United Kingdom during World War II. It was used as an anti-tank gun on its own carriage, as well as equipping a number of British tanks. Used with the APDS shot, it was capable of defeating all but the thickest armour on German tanks. It was used to "up-gun" some foreign-built vehicles in British service, notably to produce the Sherman Firefly variant of the US M4 Sherman tank, giving British tank units the ability to hold their own against their German counterparts. In the anti-tank role, it was replaced after the war by the 120 mm BAT recoilless rifle. As a tank gun, it was succeeded by the 84 mm 20 pounder.

<span class="mw-page-title-main">M7 Priest</span> American self-propelled artillery vehicle

The 105 mm Howitzer Motor Carriage M7 was an American self-propelled gun vehicle produced during World War II. It was given the official service name 105 mm Self Propelled Gun, Priest by the British Army, due to the pulpit-like machine gun ring, and following on from the Bishop and the contemporary Deacon self-propelled guns.

<span class="mw-page-title-main">Sherman Firefly</span> United Kingdom medium tank of WWII

The Sherman Firefly was a medium tank used by the United Kingdom and some armoured formations of other Allies in the Second World War. It was based on the US M4 Sherman but was fitted with the more powerful British 76.2 mm (3.00 in) calibre 17-pounder anti-tank gun as its main weapon. Conceived as a stopgap until future British tank designs came into service, the Sherman Firefly became the most common vehicle mounting the 17-pounder in the war.

<span class="mw-page-title-main">Ordnance QF 6-pounder</span> British anti-tank gun

The Ordnance Quick-Firing 6-pounder 7 cwt, or just 6-pounder, was a British 57 mm gun, serving during the Second World War as a primary anti-tank gun of both the British and United States Army. It was also used as the main armament for a number of armoured fighting vehicles.

<span class="mw-page-title-main">Ram tank</span> Canadian medium tank

The Tank, Cruiser, Ram was a cruiser tank designed and built by Canada in the Second World War, based on the U.S. M3 Medium tank chassis. Due to standardization on the American Sherman tank for frontline units, it was used exclusively for training purposes and was never used in combat as a gun tank. The chassis was used for several other combat roles however, such as a flamethrower tank, observation post and armoured personnel carrier.

<span class="mw-page-title-main">75 mm gun M2–M6</span> Standard American tank guns of the Second World War

The 75 mm gun, models M2 to M6, was the standard American medium caliber gun fitted to mobile platforms during World War II. They were primarily mounted on tanks, such as the M3 Lee and M4 Sherman, but one variant was also used as an air-to-ground gun on the B-25 Mitchell medium bomber aircraft. There were five main variants used during the war: M2, M3, M4, M5 and M6.

<span class="mw-page-title-main">Ordnance QF 75 mm</span> Tank gun

The Ordnance QF 75 mm, abbreviated to OQF 75 mm, was a British tank gun of the Second World War. It was obtained by boring out the Ordnance QF 6-pounder 57 mm anti-tank gun to 75 mm, to give better performance against infantry targets in a similar fashion to the 75 mm M3 gun fitted to the American Sherman tank. The QF came from "quick-firing", referring to the use of ammunition where the shell has a fixed cartridge. The gun was also sometimes known as ROQF from Royal Ordnance Quick-Firing.

<span class="mw-page-title-main">Tanks in World War II</span> Overview of tanks in World War II

Tanks were an important weapons system in World War II. Even though tanks in the inter-war years were the subject of widespread research, production was limited to relatively small numbers in a few countries. However, during World War II, most armies employed tanks, and production levels reached thousands each month. Tank usage, doctrine and production varied widely among the combatant nations. By war's end, a consensus was emerging regarding tank doctrine and design.

<span class="mw-page-title-main">Lend-Lease Sherman tanks</span> Medium tank

The United States provided tens of thousands of its Medium Tank M4, also named the Sherman, to many of its Allies during the Second World War, under the terms of Lend-Lease.

<span class="mw-page-title-main">QF 3-inch 20 cwt</span> Anti-aircraft gun

The QF 3-inch 20 cwt anti-aircraft gun became the standard anti-aircraft gun used in the home defence of the United Kingdom against German Zeppelins airships and bombers and on the Western Front in World War I. It was also common on British warships in World War I and submarines in World War II. 20 cwt referred to the weight of the barrel and breech, to differentiate it from other 3-inch guns. While other AA guns also had a bore of 3 inches (76 mm), the term 3-inch was only ever used to identify this gun in the World War I era, and hence this is what writers are usually referring to by 3-inch AA gun.

American military technologies developed during World War II became more advanced and specialized as the war progressed. The technologies produced ranged in complexity from relatively simple items such as small arms and armored vehicles, including tanks, to more complex items such as the atomic bomb. The latter, produced under the secretive Manhattan Project, proved to be an incredibly powerful weapon that revolutionized warfare and was used to end the war. Other technologies, such as the M4 Sherman tank, the M1 Garand and M1 Carbine, and the gas mask, were refinements on previously existing technologies.

<span class="mw-page-title-main">T48 Gun Motor Carriage</span> Self-propelled anti-tank gun

The T48 57 mm Gun Motor Carriage was a self-propelled anti-tank gun produced by the Diamond T company in 1943 for the United States. The design incorporated a 57 mm gun M1, a US production of the British Ordnance QF 6 pounder, mounted on an M3 Half-track.

References

  1. Roberts, Eric (16 March 2004). "British Technology and the Second World War". Stanford University. Retrieved 26 April 2015. British science and technology was instrumental in winning the Second World War. This course looks at several different technological innovations undertaken in Britain in the context of the wartime period: the breaking of the German Enigma code at Bletchley Park (which Winston Churchill credited with having won the Battle of the Atlantic), the development of radar, the advances in wartime medicine and pharmacology (most notably, the first practical uses of penicillin), and the participation by British scientists in the Manhattan Project.
  2. Paul Kennedy, Engineers of Victory: The Problem Solvers Who Turned The Tide in the Second World War (2013)
  3. James W. Brennan, "The Proximity Fuze: Whose Brainchild?," U.S. Naval Institute Proceedings (1968) 94#9 pp 72–78.
  4. James Phinney Baxter III (Official Historian of the Office of Scientific Research and Development), Scientists Against Time (Boston: Little, Brown, and Co., 1946), page 142.
  5. Baldwin, Ralph B. The Deadly Fuze: Secret Weapon of World War II, pp. 4-6, 11, 50, 279, Presidio Press, San Rafael, California, 1980. ISBN   978-0-89141-087-4.
  6. Boris Kavalerchik, Voenno-Istoricheskiy Arkhiv, issue No. 1, 2006
  7. "From World War II Radar to Microwave Popcorn, the Cavity Magnetron Was There - IEEE Spectrum". spectrum.ieee.org. Retrieved 2023-01-14.
  8. Angela Hind (February 5, 2007). "Briefcase 'that changed the world'". BBC News. Retrieved 2007-08-16.
  9. Harford, Tim (9 October 2017). "How the search for a 'death ray' led to radar". 50 Things That Made the Modern Economy. BBC World Service. Retrieved 9 October 2017.
  10. 1 2 Septimus H. Paul (2000). Nuclear Rivals: Anglo-American Atomic Relations, 1941–1952. Ohio State U.P. pp. 1–7. ISBN   9780814208526.
  11. Lee, Sabine (2022-01-02). ""Crucial? Helpful? Practically Nil?" Reality and Perception of Britain's Contribution to the Development of Nuclear Weapons during the Second World War". Diplomacy & Statecraft. 33 (1): 19–40. doi: 10.1080/09592296.2022.2041805 . ISSN   0959-2296. S2CID   247253473.
  12. Gowing, Margaret (1964). Britain and Atomic Energy, 1939-1945. United Kingdom Atomic Energy Authority. St Martin's Press; see book review by Anderson, Oscar E. (1965). "Britain and Atomic Energy, 1939-1945. Margaret Gowing". Isis. 56 (1): 111–113. doi:10.1086/349949. ISSN   0021-1753.
  13. "How the Tizard Mission paved the way for research at MIT". MIT News | Massachusetts Institute of Technology. 23 November 2015. Retrieved 2023-01-14.
  14. "The Tizard Mission: 75 years on | Imperial News | Imperial College London". Imperial News. 2 December 2015. Retrieved 2023-01-14.
  15. "Tizard Mission75th Anniversary Commemoration" (PDF). www.secnav.navy.mil. Office of Naval Research, the British Embassy Washington, and the Embassy of Canada in Washington. Retrieved 2023-01-14.
  16. "The Tizard Mission – 75 Years of Anglo-American Technical Alliance". National Air And Space Museum. Smithsonian. Retrieved 2023-01-14.{{cite web}}: CS1 maint: others (link)
  17. "The Tizard Mission: 75 Years of Transatlantic Partnership on Science and Technology". GOV.UK. Retrieved 2023-01-14.
  18. "Nuclear Treaty still going strong at 50". Defence Policy and Business. Ministry of Defense. 4 September 2008. Retrieved 6 December 2018.{{cite web}}: CS1 maint: others (link)
  19. Adam White (29 June 2010). "How a Secret Spy Pact Helped Win the Cold War". Time.