Anabaena circinalis | |
---|---|
Anabaena circinalis filament | |
Scientific classification | |
Domain: | Bacteria |
Phylum: | Cyanobacteria |
Class: | Cyanophyceae |
Order: | Nostocales |
Family: | Nostocaceae |
Genus: | Anabaena |
Species: | A. circinalis |
Binomial name | |
Anabaena circinalis Rabenhorst ex Bornet & Flahault, 1886 | |
Anabaena circinalis is a species of Gram-negative, photosynthetic cyanobacteria common to freshwater environments throughout the world. Much of the scientific interest in A. circinalis owes to its production of several potentially harmful cyanotoxins, ranging in potency from irritating to lethal. [1] Under favorable conditions for growth, A. circinalis forms large algae-like blooms, potentially harming the flora and fauna of an area.
Anabaena circinalis exhibits a filamentous morphology, each filament a string of task-specific cells. The appearance of cell differentiation was a great evolutionary leap; marking cyanobacteria as one of the first multicellular organisms on Earth. [2] On the A. circinalis filament, the most numerous structures are vegetative cells, responsible for the photosynthesis of high-energy sugars from environmental carbon, water, and sunlight. The energy from photosynthesis is used, in part, for the biosynthesis of cellular materials from nitrogenous compounds. During periods when combined nitrogen (e.g. ammonia or nitrate) is unavailable, A. circinalis form heterocysts, larger, round, nitrogen-fixing cells found every ten to twenty cells or so on the filament. Heterocysts function to convert environmental nitrogen (N2) into compounds such as ammonia or nitrate. Nitrogenase , an oxygen-sensitive enzyme, is essential to this conversion. For the proper functioning of nitrogenase, the intracellular environment of the heterocyst must be anaerobic, a task achieved by the oxygen-impermeable structure of the heterocyst wall. [3] Although functioning independent of each other, vegetative cells and heterocysts are both essential to the survival of the organism; vegetative cells providing energy-rich sugars to the organism, while heterocysts fix nitrogen for amino acid production and cellular biosynthesis. Also found along the filaments are gas vacuoles, specialized compartments that inflate or deflate with air to provide upward or downward movement. [4] This adaptation positions A. circinalis at a favorable depth, determined by available sunlight, water temperature, or O2 concentration. With optimal environmental conditions, Anabaena circinalis grow unchecked, forming large blooms that appear as a greenish slime at the surface of the water (fig. 2). In harsh conditions, A. circinalis form spore-like cells called akinetes . Akinetes are resistant to low temperature, desiccation, and darkness. Often, akinetes will hibernate in sediment until environmental conditions allow germination and re-growth. [5]
North American and European strains of Anabaena circinalis produce anatoxin-a , one of the first cyanobacterial neurotoxins identified. [6] In the late 1950s, research began in earnest following several cattle deaths attributed to contaminated drinking water. [6] Due in part to the relatively short time from ingestion to death, the toxin was ominously coined Very Fast Death Factor (VFDF). Anatoxin-a functions as a postsynaptic nicotinic agonist, binding to acetylcholine receptors at the neuromuscular junctions. However, unlike acetylcholine, anatoxin-a is not degradable by cholinesterase, resulting in a persistent muscle contraction. This disruption presents as coordination loss, paralysis, muscle twitching, shortness of breath, and possibly death. [6] Biological toxicity aside, Anabaena circinalis blooms have the potential to disrupt commercial fishing areas, water-treatment facilities, and recreational waterways. Add to this the high cost of toxicity monitoring, and it's apparent that Anabaena circinalis can have a detrimental economic impact as well. [7] In some freshwater environments of Australia, A. circinalis are known to produce paralytic shellfish toxins (PSTs), [8] a neurotoxin also found in some marine dinoflagellates. Severe PST intoxication can result in a potentially fatal illness known as paralytic shellfish poisoning (PSP). PSTs are in a class of poisons known as the saxitoxins, which are among the most toxic naturally produced substances. Saxitoxin poisoning begins with the blockage of sodium and potassium channels, quickly leading to a decrease in neural action potentials, flaccid paralysis, respiratory arrest, and eventually death. [9]
Regardless of geographic location, A. circinalis are monophyletic, having evolved from a cyanobacterial ancestor approximately 1-2 billion years ago. [5] Because PST-producing A. circinalis is morphologically similar to non-PST strains, attempts are being made to subdivide these populations further. Historically, PCR primers have been employed to isolate and analyze 16S rRNA, a highly conserved region of the cyanobacterial ribosomal subunit. However, newer assays focusing on base variations in rpoC1 genes have proven to be more precise at both the genus and species level. This precision provides an increasingly accurate determination of the presence or absence of PSTs among A. circinalis species. [10]
The toxins produced by Anabaena circinalis (and similar species) occur in many different analogs, each varying in toxicity. Biotransformation experiments have shown promise in the chemical conversion of highly toxic PSTs into less toxic forms. This process may provide a way to detoxify dangerous blooms before they cause irreparable damage. Additionally, some forms of PSTs have shown promise as long-lasting anesthetics for various chronic medical conditions. [11] The United States Military has researched saxitoxin since the 1950s, naming the toxin Agent TZ. In 1960, while piloting the now-infamous ' U-2 Incident' over Russian airspace, CIA pilot Francis Gary Powers was rumored to have had a saxitoxin "suicide pill", which he was later criticized for not using upon his capture. [12] Military researchers have since found the aerosol dispersion of saxitoxin to have a much higher toxicity than both sarin nerve gas and ricin, [13] leading to the possibility of using saxitoxins on the battlefield. However, the Chemical Weapons Convention (CWC) of 1993 categorized saxitoxins as a Schedule 1 substance, meaning:
As per the CWC, stockpiles of all chemical weapons, including saxitoxin, were to be destroyed by the year 2010. [14]
Cyanobacteria, also called Cyanobacteriota or Cyanophyta, are a phylum of gram-negative bacteria that obtain energy via photosynthesis. The name cyanobacteria refers to their color, which similarly forms the basis of cyanobacteria's common name, blue-green algae, although they are not usually scientifically classified as algae. They appear to have originated in a freshwater or terrestrial environment. Sericytochromatia, the proposed name of the paraphyletic and most basal group, is the ancestor of both the non-photosynthetic group Melainabacteria and the photosynthetic cyanobacteria, also called Oxyphotobacteria.
Hormogonia are motile filaments of cells formed by some cyanobacteria in the order Nostocales and Stigonematales. They are formed during vegetative reproduction in unicellular, filamentous cyanobacteria, and some may contain heterocysts and akinetes.
Heterocysts or heterocytes are specialized nitrogen-fixing cells formed during nitrogen starvation by some filamentous cyanobacteria, such as Nostoc punctiforme, Cylindrospermum stagnale, and Anabaena sphaerica. They fix nitrogen from dinitrogen (N2) in the air using the enzyme nitrogenase, in order to provide the cells in the filament with nitrogen for biosynthesis.
Cyanotoxins are toxins produced by cyanobacteria. Cyanobacteria are found almost everywhere, but particularly in lakes and in the ocean where, under high concentration of phosphorus conditions, they reproduce exponentially to form blooms. Blooming cyanobacteria can produce cyanotoxins in such concentrations that they can poison and even kill animals and humans. Cyanotoxins can also accumulate in other animals such as fish and shellfish, and cause poisonings such as shellfish poisoning.
Saxitoxin (STX) is a potent neurotoxin and the best-known paralytic shellfish toxin (PST). Ingestion of saxitoxin by humans, usually by consumption of shellfish contaminated by toxic algal blooms, is responsible for the illness known as paralytic shellfish poisoning (PSP).
Anabaena is a genus of filamentous cyanobacteria that exist as plankton. They are known for nitrogen-fixing abilities, and they form symbiotic relationships with certain plants, such as the mosquito fern. They are one of four genera of cyanobacteria that produce neurotoxins, which are harmful to local wildlife, as well as farm animals and pets. Production of these neurotoxins is assumed to be an input into its symbiotic relationships, protecting the plant from grazing pressure.
Algal mats are one of many types of microbial mat that forms on the surface of water or rocks. They are typically composed of blue-green cyanobacteria and sediments. Formation occurs when alternating layers of blue-green bacteria and sediments are deposited or grow in place, creating dark-laminated layers. Stromatolites are prime examples of algal mats. Algal mats played an important role in the Great Oxidation Event on Earth some 2.3 billion years ago. Algal mats can become a significant ecological problem, if the mats grow so expansive or thick as to disrupt the other underwater marine life by blocking the sunlight or producing toxic chemicals.
Paralytic shellfish poisoning (PSP) is one of the four recognized syndromes of shellfish poisoning, which share some common features and are primarily associated with bivalve mollusks. These shellfish are filter feeders and accumulate neurotoxins, chiefly saxitoxin, produced by microscopic algae, such as dinoflagellates, diatoms, and cyanobacteria. Dinoflagellates of the genus Alexandrium are the most numerous and widespread saxitoxin producers and are responsible for PSP blooms in subarctic, temperate, and tropical locations. The majority of toxic blooms have been caused by the morphospecies Alexandrium catenella, Alexandrium tamarense, Gonyaulax catenella and Alexandrium fundyense, which together comprise the A. tamarense species complex. In Asia, PSP is mostly associated with the occurrence of the species Pyrodinium bahamense.
Aphanizomenon flos-aquae is a brackish and freshwater species of cyanobacteria found around the world, including the Baltic Sea and the Great Lakes.
Anatoxin-a, also known as Very Fast Death Factor (VFDF), is a secondary, bicyclic amine alkaloid and cyanotoxin with acute neurotoxicity. It was first discovered in the early 1960s in Canada, and was isolated in 1972. The toxin is produced by multiple genera of cyanobacteria and has been reported in North America, South America, Central America, Europe, Africa, Asia, and Oceania. Symptoms of anatoxin-a toxicity include loss of coordination, muscular fasciculations, convulsions and death by respiratory paralysis. Its mode of action is through the nicotinic acetylcholine receptor (nAchR) where it mimics the binding of the receptor's natural ligand, acetylcholine. As such, anatoxin-a has been used for medicinal purposes to investigate diseases characterized by low acetylcholine levels. Due to its high toxicity and potential presence in drinking water, anatoxin-a poses a threat to animals, including humans. While methods for detection and water treatment exist, scientists have called for more research to improve reliability and efficacy. Anatoxin-a is not to be confused with guanitoxin, another potent cyanotoxin that has a similar mechanism of action to that of anatoxin-a and is produced by many of the same cyanobacteria genera, but is structurally unrelated.
Cylindrospermopsin is a cyanotoxin produced by a variety of freshwater cyanobacteria. CYN is a polycyclic uracil derivative containing guanidino and sulfate groups. It is also zwitterionic, making it highly water soluble. CYN is toxic to liver and kidney tissue and is thought to inhibit protein synthesis and to covalently modify DNA and/or RNA. It is not known whether cylindrospermopsin is a carcinogen, but it appears to have no tumour initiating activity in mice.
Aphanizomenon is a genus of cyanobacteria that inhabits freshwater lakes and can cause dense blooms. They are unicellular organisms that consolidate into linear (non-branching) chains called trichomes. Parallel trichomes can then further unite into aggregates called rafts. Cyanobacteria such as Aphanizomenon are known for using photosynthesis to create energy and therefore use sunlight as their energy source. Aphanizomenon bacteria also play a big role in the Nitrogen cycle since they can perform nitrogen fixation. Studies on the species Aphanizomenon flos-aquae have shown that it can regulate buoyancy through light-induced changes in turgor pressure. It is also able to move by means of gliding, though the specific mechanism by which this is possible is not yet known.
A harmful algal bloom (HAB), or excessive algae growth, is an algal bloom that causes negative impacts to other organisms by production of natural algae-produced toxins, mechanical damage to other organisms, or by other means. HABs are sometimes defined as only those algal blooms that produce toxins, and sometimes as any algal bloom that can result in severely lower oxygen levels in natural waters, killing organisms in marine or fresh waters. Blooms can last from a few days to many months. After the bloom dies, the microbes that decompose the dead algae use up more of the oxygen, generating a "dead zone" which can cause fish die-offs. When these zones cover a large area for an extended period of time, neither fish nor plants are able to survive. Harmful algal blooms in marine environments are often called "red tides".
Planktothrix is a diverse genus of filamentous cyanobacteria observed to amass in algal blooms in water ecosystems across the globe. Like all Oscillatoriales, Planktothrix species have no heterocysts and no akinetes. Planktothrix are unique because they have trichomes and contain gas vacuoles unlike typical planktonic organisms. Previously, some species of the taxon were grouped within the genus Oscillatoria, but recent work has defined Planktothrix as its own genus. A tremendous body of work on Planktothrix ecology and physiology has been done by Anthony E. Walsby, and the 55.6 kb microcystin synthetase gene which gives these organisms the ability to synthesize toxins has been sequenced. P. agardhii is an example of a type species of the genus. P. agardhii and P. rubescens are commonly observed in lakes of the Northern Hemisphere where they are known producers of potent hepatotoxins called microcystins.
Cylindrospermopsis raciborskii is a freshwater cyanobacterium. (name currently accepted taxonomically: Raphidipsis raciborskii)
Neosaxitoxin (NSTX) is included, as other saxitoxin-analogs, in a broad group of natural neurotoxic alkaloids, commonly known as the paralytic shellfish toxins (PSTs). The parent compound of PSTs, saxitoxin (STX), is a tricyclic perhydropurine alkaloid, which can be substituted at various positions, leading to more than 30 naturally occurring STX analogues. All of them are related imidazoline guanidinium derivatives.
Alexandrium catenella is a species of dinoflagellates. It is among the group of Alexandrium species that produce toxins that cause paralytic shellfish poisoning, and is a cause of red tide. ‘’Alexandrium catenella’’ is observed in cold, coastal waters, generally at temperate latitudes. These organisms have been found in the west coast of North America, Japan, Australia, and parts of South Africa.
Gloeotrichia is a large (~2 mm) colonial genus of Cyanobacteria, belonging to the order Nostocales. The name Gloeotrichia is derived from its appearance of filamentous body with mucilage matrix. Found in lakes across the globe, gloeotrichia are notable for the important roles that they play in the nitrogen and phosphorus cycles. Gloeotrichia are also a species of concern for lake managers, as they have been shown to push lakes towards eutrophication and produce deadly toxins.
Guanitoxin (GNT), formerly known as anatoxin-a(S) "Salivary", is a naturally occurring cyanotoxin commonly isolated from cyanobacteria. It is a potent covalent acetylcholinesterase inhibitor, and thus a potent rapid acting neurotoxin which in cases of severe exposure can lead to death. Guanitoxin was first structurally characterized in 1989, and consists of a cyclic N-hydroxyguanine organophosphate with a phosphate ester moiety.
Aphanizomenon ovalisporum is a filamentous cyanobacteria present in many algal blooms.