Angles between flats

Last updated

The concept of angles between lines (in the plane or in space), between two planes ( dihedral angle ) or between a line and a plane can be generalized to arbitrary dimensions. This generalization was first discussed by Camille Jordan. [1] For any pair of flats in a Euclidean space of arbitrary dimension one can define a set of mutual angles which are invariant under isometric transformation of the Euclidean space. If the flats do not intersect, their shortest distance is one more invariant. [1] These angles are called canonical [2] or principal. [3] The concept of angles can be generalized to pairs of flats in a finite-dimensional inner product space over the complex numbers.

Contents

Jordan's definition

Let and be flats of dimensions and in the -dimensional Euclidean space . By definition, a translation of or does not alter their mutual angles. If and do not intersect, they will do so upon any translation of which maps some point in to some point in . It can therefore be assumed without loss of generality that and intersect.

Jordan shows that Cartesian coordinates in can then be defined such that and are described, respectively, by the sets of equations

and

with . Jordan calls these coordinates canonical. By definition, the angles are the angles between and .

The non-negative integers are constrained by

For these equations to determine the five non-negative integers completely, besides the dimensions and and the number of angles , the non-negative integer must be given. This is the number of coordinates , whose corresponding axes are those lying entirely within both and . The integer is thus the dimension of . The set of angles may be supplemented with angles to indicate that has that dimension.

Jordan's proof applies essentially unaltered when is replaced with the -dimensional inner product space over the complex numbers. (For angles between subspaces, the generalization to is discussed by Galántai and Hegedũs in terms of the below variational characterization. [4] ) [1]

Angles between subspaces

Now let and be subspaces of the -dimensional inner product space over the real or complex numbers. Geometrically, and are flats, so Jordan's definition of mutual angles applies. When for any canonical coordinate the symbol denotes the unit vector of the axis, the vectors form an orthonormal basis for and the vectors form an orthonormal basis for , where

Being related to canonical coordinates, these basic vectors may be called canonical.

When denote the canonical basic vectors for and the canonical basic vectors for then the inner product vanishes for any pair of and except the following ones.

With the above ordering of the basic vectors, the matrix of the inner products is thus diagonal. In other words, if and are arbitrary orthonormal bases in and then the real, orthogonal or unitary transformations from the basis to the basis and from the basis to the basis realize a singular value decomposition of the matrix of inner products . The diagonal matrix elements are the singular values of the latter matrix. By the uniqueness of the singular value decomposition, the vectors are then unique up to a real, orthogonal or unitary transformation among them, and the vectors and (and hence ) are unique up to equal real, orthogonal or unitary transformations applied simultaneously to the sets of the vectors associated with a common value of and to the corresponding sets of vectors (and hence to the corresponding sets of ).

A singular value can be interpreted as corresponding to the angles introduced above and associated with and a singular value can be interpreted as corresponding to right angles between the orthogonal spaces and , where superscript denotes the orthogonal complement.

Variational characterization

The variational characterization of singular values and vectors implies as a special case a variational characterization of the angles between subspaces and their associated canonical vectors. This characterization includes the angles and introduced above and orders the angles by increasing value. It can be given the form of the below alternative definition. In this context, it is customary to talk of principal angles and vectors. [3]

Definition

Let be an inner product space. Given two subspaces with , there exists then a sequence of angles called the principal angles, the first one defined as

where is the inner product and the induced norm. The vectors and are the corresponding principal vectors.

The other principal angles and vectors are then defined recursively via

This means that the principal angles form a set of minimized angles between the two subspaces, and the principal vectors in each subspace are orthogonal to each other.

Examples

Geometric example

Geometrically, subspaces are flats (points, lines, planes etc.) that include the origin, thus any two subspaces intersect at least in the origin. Two two-dimensional subspaces and generate a set of two angles. In a three-dimensional Euclidean space, the subspaces and are either identical, or their intersection forms a line. In the former case, both . In the latter case, only , where vectors and are on the line of the intersection and have the same direction. The angle will be the angle between the subspaces and in the orthogonal complement to . Imagining the angle between two planes in 3D, one intuitively thinks of the largest angle, .

Algebraic example

In 4-dimensional real coordinate space R4, let the two-dimensional subspace be spanned by and , and let the two-dimensional subspace be spanned by and with some real and such that . Then and are, in fact, the pair of principal vectors corresponding to the angle with , and and are the principal vectors corresponding to the angle with

To construct a pair of subspaces with any given set of angles in a (or larger) dimensional Euclidean space, take a subspace with an orthonormal basis and complete it to an orthonormal basis of the Euclidean space, where . Then, an orthonormal basis of the other subspace is, e.g.,

Basic properties

Advanced properties

Extensions

The notion of the angles and some of the variational properties can be naturally extended to arbitrary inner products [10] and subspaces with infinite dimensions. [7]

Computation

Historically, the principal angles and vectors first appear in the context of canonical correlation and were originally computed using SVD of corresponding covariance matrices. However, as first noticed in, [3] the canonical correlation is related to the cosine of the principal angles, which is ill-conditioned for small angles, leading to very inaccurate computation of highly correlated principal vectors in finite precision computer arithmetic. The sine-based algorithm [3] fixes this issue, but creates a new problem of very inaccurate computation of highly uncorrelated principal vectors, since the sine function is ill-conditioned for angles close to π/2. To produce accurate principal vectors in computer arithmetic for the full range of the principal angles, the combined technique [10] first compute all principal angles and vectors using the classical cosine-based approach, and then recomputes the principal angles smaller than π/4 and the corresponding principal vectors using the sine-based approach. [3] The combined technique [10] is implemented in open-source libraries Octave [11] and SciPy [12] and contributed [13] and [14] to MATLAB.

See also

Related Research Articles

In mathematics, a geometric algebra is an extension of elementary algebra to work with geometrical objects such as vectors. Geometric algebra is built out of two fundamental operations, addition and the geometric product. Multiplication of vectors results in higher-dimensional objects called multivectors. Compared to other formalisms for manipulating geometric objects, geometric algebra is noteworthy for supporting vector division and addition of objects of different dimensions.

<span class="mw-page-title-main">Pauli matrices</span> Matrices important in quantum mechanics and the study of spin

In mathematical physics and mathematics, the Pauli matrices are a set of three 2 × 2 complex matrices which are Hermitian, involutory and unitary. Usually indicated by the Greek letter sigma, they are occasionally denoted by tau when used in connection with isospin symmetries.

Kinematics is a subfield of physics, developed in classical mechanics, that describes the motion of points, bodies (objects), and systems of bodies without considering the forces that cause them to move. Kinematics, as a field of study, is often referred to as the "geometry of motion" and is occasionally seen as a branch of mathematics. A kinematics problem begins by describing the geometry of the system and declaring the initial conditions of any known values of position, velocity and/or acceleration of points within the system. Then, using arguments from geometry, the position, velocity and acceleration of any unknown parts of the system can be determined. The study of how forces act on bodies falls within kinetics, not kinematics. For further details, see analytical dynamics.

In statistics, a statistic is sufficient with respect to a statistical model and its associated unknown parameter if "no other statistic that can be calculated from the same sample provides any additional information as to the value of the parameter". In particular, a statistic is sufficient for a family of probability distributions if the sample from which it is calculated gives no additional information than the statistic, as to which of those probability distributions is the sampling distribution.

In mechanics and geometry, the 3D rotation group, often denoted SO(3), is the group of all rotations about the origin of three-dimensional Euclidean space under the operation of composition.

In the mathematical field of differential geometry, a metric tensor is an additional structure on a manifold M that allows defining distances and angles, just as the inner product on a Euclidean space allows defining distances and angles there. More precisely, a metric tensor at a point p of M is a bilinear form defined on the tangent space at p, and a metric tensor on M consists of a metric tensor at each point p of M that varies smoothly with p.

<span class="mw-page-title-main">Radon transform</span> Integral transform

In mathematics, the Radon transform is the integral transform which takes a function f defined on the plane to a function Rf defined on the (two-dimensional) space of lines in the plane, whose value at a particular line is equal to the line integral of the function over that line. The transform was introduced in 1917 by Johann Radon, who also provided a formula for the inverse transform. Radon further included formulas for the transform in three dimensions, in which the integral is taken over planes. It was later generalized to higher-dimensional Euclidean spaces and more broadly in the context of integral geometry. The complex analogue of the Radon transform is known as the Penrose transform. The Radon transform is widely applicable to tomography, the creation of an image from the projection data associated with cross-sectional scans of an object.

In theoretical physics, a supermultiplet is a representation of a supersymmetry algebra, possibly with extended supersymmetry.

<span class="mw-page-title-main">Bloch sphere</span> Geometrical representation of the pure state space of a two-level quantum mechanical system

In quantum mechanics and computing, the Bloch sphere is a geometrical representation of the pure state space of a two-level quantum mechanical system (qubit), named after the physicist Felix Bloch.

In linear algebra, a rotation matrix is a transformation matrix that is used to perform a rotation in Euclidean space. For example, using the convention below, the matrix

In differential topology, the jet bundle is a certain construction that makes a new smooth fiber bundle out of a given smooth fiber bundle. It makes it possible to write differential equations on sections of a fiber bundle in an invariant form. Jets may also be seen as the coordinate free versions of Taylor expansions.

In rotordynamics, the rigid rotor is a mechanical model of rotating systems. An arbitrary rigid rotor is a 3-dimensional rigid object, such as a top. To orient such an object in space requires three angles, known as Euler angles. A special rigid rotor is the linear rotor requiring only two angles to describe, for example of a diatomic molecule. More general molecules are 3-dimensional, such as water, ammonia, or methane.

<span class="mw-page-title-main">Chiral model</span> Model of mesons in the massless quark limit

In nuclear physics, the chiral model, introduced by Feza Gürsey in 1960, is a phenomenological model describing effective interactions of mesons in the chiral limit (where the masses of the quarks go to zero), but without necessarily mentioning quarks at all. It is a nonlinear sigma model with the principal homogeneous space of a Lie group as its target manifold. When the model was originally introduced, this Lie group was the SU(N), where N is the number of quark flavors. The Riemannian metric of the target manifold is given by a positive constant multiplied by the Killing form acting upon the Maurer–Cartan form of SU(N).

Sinusoidal plane-wave solutions are particular solutions to the electromagnetic wave equation.

Photon polarization is the quantum mechanical description of the classical polarized sinusoidal plane electromagnetic wave. An individual photon can be described as having right or left circular polarization, or a superposition of the two. Equivalently, a photon can be described as having horizontal or vertical linear polarization, or a superposition of the two.

In geometry, various formalisms exist to express a rotation in three dimensions as a mathematical transformation. In physics, this concept is applied to classical mechanics where rotational kinematics is the science of quantitative description of a purely rotational motion. The orientation of an object at a given instant is described with the same tools, as it is defined as an imaginary rotation from a reference placement in space, rather than an actually observed rotation from a previous placement in space.

The Wigner D-matrix is a unitary matrix in an irreducible representation of the groups SU(2) and SO(3). It was introduced in 1927 by Eugene Wigner, and plays a fundamental role in the quantum mechanical theory of angular momentum. The complex conjugate of the D-matrix is an eigenfunction of the Hamiltonian of spherical and symmetric rigid rotors. The letter D stands for Darstellung, which means "representation" in German.

<span class="mw-page-title-main">Kepler orbit</span> Celestial orbit whose trajectory is a conic section in the orbital plane

In celestial mechanics, a Kepler orbit is the motion of one body relative to another, as an ellipse, parabola, or hyperbola, which forms a two-dimensional orbital plane in three-dimensional space. A Kepler orbit can also form a straight line. It considers only the point-like gravitational attraction of two bodies, neglecting perturbations due to gravitational interactions with other objects, atmospheric drag, solar radiation pressure, a non-spherical central body, and so on. It is thus said to be a solution of a special case of the two-body problem, known as the Kepler problem. As a theory in classical mechanics, it also does not take into account the effects of general relativity. Keplerian orbits can be parametrized into six orbital elements in various ways.

This article derives the main properties of rotations in 3-dimensional space.

In directional statistics, the projected normal distribution is a probability distribution over directions that describes the radial projection of a random variable with n-variate normal distribution over the unit (n-1)-sphere.

References

  1. 1 2 3 Jordan, C. (1875). "Essai sur la géométrie à dimensions". Bull. Soc. Math. France. 3: 103.
  2. Afriat, S. N. (1957). "Orthogonal and oblique projectors and the characterization of pairs of vector spaces". Math. Proc. Cambridge Philos. Soc. 53 (4): 800. doi:10.1017/S0305004100032916.
  3. 1 2 3 4 5 Björck, Å.; Golub, G. H. (1973). "Numerical Methods for Computing Angles Between Linear Subspaces". Math. Comp. 27 (123): 579. doi:10.2307/2005662. JSTOR   2005662.
  4. Galántai, A.; Hegedũs, Cs. J. (2006). "Jordan's principal angles in complex vector spaces". Numer. Linear Algebra Appl. 13 (7): 589–598. CiteSeerX   10.1.1.329.7525 . doi:10.1002/nla.491.
  5. Halmos, P.R. (1969), "Two subspaces", Trans. Amer. Math. Soc., 144: 381–389, doi: 10.1090/S0002-9947-1969-0251519-5
  6. 1 2 3 Knyazev, A.V.; Argentati, M.E. (2006), "Majorization for Changes in Angles Between Subspaces, Ritz Values, and Graph Laplacian Spectra", SIAM J. Matrix Anal. Appl., 29 (1): 15–32, CiteSeerX   10.1.1.331.9770 , doi:10.1137/060649070, S2CID   16987402
  7. 1 2 3 Knyazev, A.V.; Jujunashvili, A.; Argentati, M.E. (2010), "Angles between infinite dimensional subspaces with applications to the Rayleigh–Ritz and alternating projectors methods", Journal of Functional Analysis, 259 (6): 1323–1345, arXiv: 0705.1023 , doi:10.1016/j.jfa.2010.05.018, S2CID   5570062
  8. Qiu, L.; Zhang, Y.; Li, C.-K. (2005), "Unitarily invariant metrics on the Grassmann space" (PDF), SIAM Journal on Matrix Analysis and Applications, 27 (2): 507–531, doi:10.1137/040607605
  9. Kato, D.T. (1996), Perturbation Theory for Linear Operators, Springer, New York
  10. 1 2 3 Knyazev, A.V.; Argentati, M.E. (2002), "Principal Angles between Subspaces in an A-Based Scalar Product: Algorithms and Perturbation Estimates", SIAM Journal on Scientific Computing, 23 (6): 2009–2041, CiteSeerX   10.1.1.73.2914 , doi:10.1137/S1064827500377332
  11. Octave function subspace
  12. SciPy linear-algebra function subspace_angles
  13. MATLAB FileExchange function subspace
  14. MATLAB FileExchange function subspacea