Anopheles sinensis

Last updated

Anopheles sinensis
Anopheles-sinensis.png
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Eukaryota
Kingdom: Animalia
Phylum: Arthropoda
Class: Insecta
Order: Diptera
Family: Culicidae
Genus: Anopheles
Species:
A. sinensis
Binomial name
Anopheles sinensis
Wiedemann, 1828

Anopheles sinensis is a species of mosquito that transmits malaria as well as lymphatic filariasis. It is regarded as the most important vector of these human parasitic diseases in Southeast Asia. [1] [2] It is the primary vector of vivax malaria ( Plasmodium vivax ) in many regions. In China it also transmits the filalarial parasite ( Wuchereria bancrofti ), [3] and arthropod roundworm (Romanomermis jingdeensis). [4] In Japan it is also a vector of a roundworm Setaria digitata in sheep and goats. [5] [6]

Contents

Because of its similarity with other Anopheles , it is now considered a species complex comprising at least four species. Its genome was sequenced in 2014. [7]

Taxonomy and description

An. sinensis is classified as a species complex, and is a member of An. hyrcanus group. The group is distinguished from other groups by the presence of pale bands (usually four) on the palpi and by the presence of a tuft of dark scales on the clypeus on each side in the female adult. It was first described by German naturalist Christian Rudolph Wilhelm Wiedemann in 1828, and became one of the earliest known species of Anopheles. Due to its similarity with other mosquitos and geographical diversity, the species was redescribed several times by different taxonomists, with names like An. yesoensis (1913), An. sineroides (1924), An. lesetri (1936), An. pullus (1937), and An. yatsushiroensis (1951). These species are considered as either synonyms or members of the species complex. [8] [9] [10] [11]

Female An. sinensis has a dark-coloured body, with its palps are shorter than proboscis. The integument of the neck region is yellow. The legs are dark-brown on outer surface, but pale on the inside. The base of the leg is swollen towards the body. The wings are covered with dark and pale scales. The tip of the wing has a prominent spot. Larva has an elongated head. Its antennae are about the length of the head, and containing pointed spicules towards the inner side. [12]

Distribution and habitat

An. sinensis is found in northeast India, Burma, Thailand, Malaysia, Indonesia, Kampuchea, Vietnam, China, Taiwan, Japan and Korea. In India it is reported from Meghalaya, Assam, and Mizoram. [13] [14] They are found in all types of environment including naturally-made clean water, stagnant or flowing. Their major habitats are rice fields, ditches, streams, irrigation canals, marshes, ponds, and ground pools. They mostly bite large animals, and human biting is relatively less when animals are present nearby. Their feeding takes place throughout the night from dusk to dawn, but heaviest biting occurs between 2 and 4 in the morning. Even though they are attracted by lights, they prefer to bite outdoor. They hibernate mostly under part of dense grasses during October–March. At the end of the hibernation period in March–April they feed during daytime. [1] In August 1962 it was found that An. sinensis was a vector of vivax malaria in Korea. [15] It has become one of the major vectors of vivax in China. [16]

Genome

The draft genome sequence of An. sinensis was published in 2014. It has 3,972 gene clusters containing 11,300 genes that were common to the genomes of the three previously sequenced mosquito species, An. gambiae , A. aegypti , and Culex quinquefasciatus . It contains 16,766 protein-coding genes. 2377 genes had an ortholog belonging to one of the 235 known biological pathways. There are 41 microRNA, 348 tRNA and 2017 rRNA genes. [7]

Related Research Articles

<span class="mw-page-title-main">Malaria</span> Mosquito-borne infectious disease

Malaria is a mosquito-borne infectious disease that affects humans and other vertebrates. Human malaria causes symptoms that typically include fever, fatigue, vomiting, and headaches. In severe cases, it can cause jaundice, seizures, coma, or death. Symptoms usually begin 10 to 15 days after being bitten by an infected Anopheles mosquito. If not properly treated, people may have recurrences of the disease months later. In those who have recently survived an infection, reinfection usually causes milder symptoms. This partial resistance disappears over months to years if the person has no continuing exposure to malaria.

<i>Plasmodium</i> Genus of parasitic protists that can cause malaria

Plasmodium is a genus of unicellular eukaryotes that are obligate parasites of vertebrates and insects. The life cycles of Plasmodium species involve development in a blood-feeding insect host which then injects parasites into a vertebrate host during a blood meal. Parasites grow within a vertebrate body tissue before entering the bloodstream to infect red blood cells. The ensuing destruction of host red blood cells can result in malaria. During this infection, some parasites are picked up by a blood-feeding insect, continuing the life cycle.

<i>Anopheles</i> Genus of mosquito

Anopheles or Marsh Mosquitoes is a genus of mosquito first described and named by J. W. Meigen in 1818. About 460 species are recognized; while over 100 can transmit human malaria, only 30–40 commonly transmit parasites of the genus Plasmodium, which cause malaria in humans in endemic areas. Anopheles gambiae is one of the best known, because of its predominant role in the transmission of the most dangerous malaria parasite species – Plasmodium falciparum.

<i>Plasmodium falciparum</i> Protozoan species of malaria parasite

Plasmodium falciparum is a unicellular protozoan parasite of humans, and the deadliest species of Plasmodium that causes malaria in humans. The parasite is transmitted through the bite of a female Anopheles mosquito and causes the disease's most dangerous form, falciparum malaria. It is responsible for around 50% of all malaria cases. P. falciparum is therefore regarded as the deadliest parasite in humans. It is also associated with the development of blood cancer and is classified as a Group 2A (probable) carcinogen.

<span class="mw-page-title-main">Giovanni Battista Grassi</span> Italian politician (1854–1925)

Giovanni Battista Grassi was an Italian physician and zoologist, best known for his pioneering works on parasitology, especially on malariology. He was Professor of Comparative Zoology at the University of Catania from 1883, and Professor of Comparative Anatomy at Sapienza University of Rome from 1895 until his death. His scientific contributions covered embryological development of honey bees, on helminth parasites, the vine parasite phylloxera, on migrations and metamorphosis in eels, and on termites. He was the first to describe and establish the life cycle of the human malarial parasite, Plasmodium falciparum, and discovered that only female anopheline mosquitoes are capable of transmitting the disease. His works in malaria remain a lasting controversy in the history of Nobel Prizes, because a British army surgeon Ronald Ross, who discovered the transmission of malarial parasite in birds was given the 1902 Nobel Prize in Physiology or Medicine. But Grassi, who demonstrated the complete route of transmission of human Plasmodium, and correctly identified the types of malarial parasite as well as the mosquito vector, Anopheles claviger, was denied.

<i>Plasmodium vivax</i> Species of single-celled organism

Plasmodium vivax is a protozoal parasite and a human pathogen. This parasite is the most frequent and widely distributed cause of recurring malaria. Although it is less virulent than Plasmodium falciparum, the deadliest of the five human malaria parasites, P. vivax malaria infections can lead to severe disease and death, often due to splenomegaly. P. vivax is carried by the female Anopheles mosquito; the males do not bite.

<i>Plasmodium ovale</i> Species of single-celled organism

Plasmodium ovale is a species of parasitic protozoon that causes tertian malaria in humans. It is one of several species of Plasmodium parasites that infect humans, including Plasmodium falciparum and Plasmodium vivax which are responsible for most cases of malaria in the world. P. ovale is rare compared to these two parasites, and substantially less dangerous than P. falciparum.

<i>Plasmodium malariae</i> Species of single-celled organism

Plasmodium malariae is a parasitic protozoan that causes malaria in humans. It is one of several species of Plasmodium parasites that infect other organisms as pathogens, also including Plasmodium falciparum and Plasmodium vivax, responsible for most malarial infection. Found worldwide, it causes a so-called "benign malaria", not nearly as dangerous as that produced by P. falciparum or P. vivax. The signs include fevers that recur at approximately three-day intervals – a quartan fever or quartan malaria – longer than the two-day (tertian) intervals of the other malarial parasite.

<i>Plasmodium knowlesi</i> Species of single-celled organism

Plasmodium knowlesi is a parasite that causes malaria in humans and other primates. It is found throughout Southeast Asia, and is the most common cause of human malaria in Malaysia. Like other Plasmodium species, P. knowlesi has a life cycle that requires infection of both a mosquito and a warm-blooded host. While the natural warm-blooded hosts of P. knowlesi are likely various Old World monkeys, humans can be infected by P. knowlesi if they are fed upon by infected mosquitoes. P. knowlesi is a eukaryote in the phylum Apicomplexa, genus Plasmodium, and subgenus Plasmodium. It is most closely related to the human parasite Plasmodium vivax as well as other Plasmodium species that infect non-human primates.

<i>Plasmodium berghei</i> Single celled parasite, rodent malaria

Plasmodium berghei is a single-celled parasite causing rodent malaria. It is in the Plasmodium subgenus Vinckeia.

<i>Anopheles gambiae</i> Species of mosquito

The Anopheles gambiae complex consists of at least seven morphologically indistinguishable species of mosquitoes in the genus Anopheles. The complex was recognised in the 1960s and includes the most important vectors of malaria in sub-Saharan Africa, particularly of the most dangerous malaria parasite, Plasmodium falciparum. It is one of the most efficient malaria vectors known. The An. gambiae mosquito additionally transmits Wuchereria bancrofti which causes lymphatic filariasis, a symptom of which is elephantiasis.

<span class="mw-page-title-main">History of malaria</span> History of malaria infections

The history of malaria extends from its prehistoric origin as a zoonotic disease in the primates of Africa through to the 21st century. A widespread and potentially lethal human infectious disease, at its peak malaria infested every continent except Antarctica. Its prevention and treatment have been targeted in science and medicine for hundreds of years. Since the discovery of the Plasmodium parasites which cause it, research attention has focused on their biology as well as that of the mosquitoes which transmit the parasites.

<span class="mw-page-title-main">M. O. T. Iyengar</span>

Mandayam Osuri Tirunarayana Iyengar was an Indian medical entomologist who worked on management of filaria and malaria vectors. He was employed as an entomologist in the Department of Malaria Research, Bengal. The mermithid parasite Romanomermis iyengari and the mosquito species Culex iyengari are named after him.

<i>Anopheles walkeri</i> Species of mosquito

Anopheles walkeri is a species of mosquito found predominantly throughout the Mississippi River Valley, with its habitat ranging as far north as southern Quebec, Canada. The eggs of A. walkeri are laid directly on the water surface in freshwater swamp habitats. Since its eggs are not resistant to desiccation, this species is restricted to swampy regions with plenty of water. Anopheles walkeri, as with many other anophelines, begins to become active later in the evening than most other mosquito species in its range. This species becomes especially active late at night when in search of a blood meal. Feeding activity is affected greatly by environmental conditions within its microclimate. Wind, low humidity and cool temperatures, are all negatively correlated with feeding aggression.

<i>Anopheles albimanus</i> Species of mosquito

Anopheles albimanus is a species of mosquito in the order Diptera. It is found in coastal Central and South America, the Caribbean, and Mexico. It is a generalist species and capable of wide dispersion. A. albimanus is a common malaria vector.

<i>Anopheles claviger</i> Species of mosquito

Anopheles claviger is a mosquito species found in Palearctic realm covering Europe, North Africa, northern Arabian Peninsula, and northern Asia. It is responsible for transmitting malaria in some of these regions. The mosquito is made up of a species complex consisting of An. claviger sensu stricto and An. petragnani Del Vecchio. An. petragnani is found only in western Mediterranean region, and is reported to bite only animals; hence, it is not involved in human malaria.

<i>Setaria</i> (nematode) Genus of roundworms

Setaria is a genus of parasitic roundworms that infect domesticated mammals such as pigs, camels, cattle and horses. Some species also infect wild mammals such as deer and antelope. The genus consists of about 43 species. Members of the genus are uniquely parasites in the abdominal cavity of the body. They are mostly large-sized roundworms, possessing an elaborate head (cephalic) region that is characterised by spines, presence of four lips, and well-guarded mouth. Little is known about their pathogenic effects, but some are known to affect nervous system and eye. The larval infective forms are transmitted from one animal to another by the bite of mosquitoes and flies. In addition Setaria marshalli can be transmitted from the womb to new-born calf.

Anopheles (Cellia) karwari is a species complex of zoophilic mosquito belonging to the genus Anopheles. It is found in India, and Sri Lanka, Bangladesh, Sumatra, and Java. A. karwari is a member of the Maculatus Group and the second scarcest species reported from Indonesia. Female is blood sucking and involved in transmitting Plasmodium falciparum, thus an important malarial vector. It is considered a secondary vector in the Australian region, but its vectorial status in South-East Asia was unknown.

References

  1. 1 2 Ree, Han-Il (2005). "Studies on Anopheles sinensis, the vector species of vivax malaria in Korea". The Korean Journal of Parasitology. 43 (3): 75–92. doi:10.3347/kjp.2005.43.3.75. PMC   2712014 . PMID   16192749.
  2. Chang, Xuelian; Zhong, Daibin; Fang, Qiang; Hartsel, Joshua; Zhou, Guofa; Shi, Linna; Fang, Fujin; Zhu, Changliang; Yan, Guiyun; Mutuku, Francis (2014). "Multiple Resistances and Complex Mechanisms of Anopheles sinensis Mosquito: A Major Obstacle to Mosquito-Borne Diseases Control and Elimination in China". PLOS Neglected Tropical Diseases. 8 (5): e2889. doi: 10.1371/journal.pntd.0002889 . PMC   4031067 . PMID   24852174.
  3. Zhang, S; Cheng, F; Webber, R (1994). "A successful control programme for lymphatic filariasis in Hubei, China". Transactions of the Royal Society of Tropical Medicine and Hygiene. 88 (5): 510–2. doi:10.1016/0035-9203(94)90140-6. PMID   7992323.
  4. Yang, XS; Fang, TZ; Chen, DH; Cai, GY; Li, MS; Geng, RG (1984). "Preliminary field trials of Romanomermis jingdeensis against Anopheles sinensis in the suburbs of Shanghai". Chinese Medical Journal. 97 (8): 609–12. PMID   6440752.
  5. Zhao, Yonghua (1992). "Study on the life cycle of Setaria digitata". Journal of Yunnan Agricultural University. 6 (2): 110–115. Archived from the original on 2014-08-08.
  6. Anderson, R.C. (2000). Nematode Parasites of Vertebrates Their Development and Transmission (2nd ed.). Wallingford: CAB International. p. 480. ISBN   978-0-8519-9786-5.
  7. 1 2 Zhou, Dan; Zhang, Donghui; Ding, Guohui; Shi, Linna; Hou, Qing; Ye, Yuting; Xu, Yang; Zhou, Huayun; Xiong, Chunrong; Li, Shengdi; Yu, Jing; Hong, Shanchao; Yu, Xinyou; Zou, Ping; Chen, Chen; Chang, Xuelian; Wang, Weijie; Lv, Yuan; Sun, Yan; Ma, Lei; Shen, Bo; Zhu, Changliang (2014). "Genome sequence of Anopheles sinensis provides insight into genetics basis of mosquito competence for malaria parasites". BMC Genomics. 15 (1): 42. doi: 10.1186/1471-2164-15-42 . PMC   3901762 . PMID   24438588.
  8. Hwang, UW; Tang, LH; Kobayashi, M; Yong, TS; Ree, HI (2006). "Molecular evidence supports that Anopheles anthropophagus from China and Anopheles lesteri from Japan are the same species". Journal of the American Mosquito Control Association. 22 (2): 324–6. doi:10.2987/8756-971x(2006)22[324:mestaa]2.0.co;2. PMID   16878417. S2CID   31180780.
  9. Yajun, M; Xu, J (2005). "The Hyrcanus group of Anopheles (Anopheles) in China (Diptera: Culicidae): species discrimination and phylogenetic relationships inferred by ribosomal DNA internal transcribed spacer 2 sequences". Journal of Medical Entomology. 42 (4): 610–9. doi:10.1603/0022-2585(2005)042[0610:thgoaa]2.0.co;2. PMID   16119550. S2CID   22169339.
  10. Choochote, Wej; Min, Gi-Sik; Intapan, Pewpan M; Tantrawatpan, Chairat; Saeung, Atiporn; Lulitanond, Viraphong (2014). "Evidence to support natural hybridization between Anopheles sinensis and Anopheles kleini (Diptera: Culicidae): possibly a significant mechanism for gene introgression in sympatric populations". Parasites & Vectors. 7 (1): 36. doi: 10.1186/1756-3305-7-36 . PMC   3899613 . PMID   24443885.
  11. WHO (2007). Anopheline species complexes in South and South-East Asia. New Delhi: World Health Organization, Regional Office for South-East Asia. pp. 69–70. ISBN   9789290222941.
  12. Kaiser, Norbert Becker, Dusan Petric, Marija Zgomba, Clive Boase, Minoo Madon, Christine Dahl, Achim (2010). Mosquitoes and Their Control (2nd ed.). Berlin, Heidelberg: Springer-Verlag Berlin Heidelberg. pp. 340–341. ISBN   978-3-5409-2874-4.{{cite book}}: CS1 maint: multiple names: authors list (link)
  13. Khan, SA; Dutta, P; Borah, J; Mahanta, J (2013). "Survey of new mosquito species of Meghalaya, India". Journal of Environmental Biology. 34 (2): 191–5. PMID   24620578.
  14. Zomuanpuii, R; Guruswami, G; Nachimuthu, SK (2014). "A three year study on distribution and ecology of Anophelines in Thenzawl, Mizoram, India". Journal of Environmental Biology. 35 (2): 369–76. PMID   24665764.
  15. Ree, HI; Hong, HK; Paik, YH (1967). "[Study on natural infection of Plasmodium vivax in Anopheles sinensis in Korea]". The Korean Journal of Parasitology. 5 (1): 3–4. doi: 10.3347/kjp.1967.5.1.3 . PMID   12913558.
  16. Zhu, G; Xia, H; Zhou, H; Li, J; Lu, F; Liu, Y; Cao, J; Gao, Q; Sattabongkot, J (2013). "Susceptibility of Anopheles sinensis to Plasmodium vivax in malarial outbreak areas of central China". Parasites & Vectors. 6 (1): 176. doi: 10.1186/1756-3305-6-176 . PMC   3695883 . PMID   23768077.