Apelin

Last updated
APLN
Identifiers
Aliases APLN , APEL, XNPEP2, apelin
External IDs OMIM: 300297 MGI: 1353624 HomoloGene: 8498 GeneCards: APLN
Orthologs
SpeciesHumanMouse
Entrez
Ensembl
UniProt
RefSeq (mRNA)

NM_017413

NM_013912

RefSeq (protein)

NP_059109

NP_038940

Location (UCSC) Chr X: 129.65 – 129.65 Mb Chr X: 47.11 – 47.12 Mb
PubMed search [3] [4]
Wikidata
View/Edit Human View/Edit Mouse

Apelin (also known as APLN) is a peptide that in humans is encoded by the APLN gene. [5] Apelin is one of two endogenous ligands for the G-protein-coupled APJ receptor [6] [7] [8] [9] [10] that is expressed at the surface of some cell types. [11] It is widely expressed in various organs such as the heart, lung, kidney, liver, adipose tissue, gastrointestinal tract, brain, adrenal glands, endothelium, and human plasma.

Contents

Discovery

Apelin is a peptide hormone that was identified in 1998 by Masahiko Fujino and his colleagues at Gunma University and Takeda Pharmaceutical Company. [5] In 2013, a second peptide hormone named Elabela was found by Bruno Reversade to also act as an endogenous ligand to the APLNR.

Biosynthesis

The apelin gene encodes a pre-proprotein of 77 amino acids, [5] with a signal peptide in the N-terminal region. After translocation into the endoplasmic reticulum and cleavage of the signal peptide, the proprotein of 55 amino acids may generate several active fragments: a 36 amino acid peptide corresponding to the sequence 42-77 (apelin 36), a 17 amino acid peptide corresponding to the sequence 61-77 (apelin 17) and a 13 amino acid peptide corresponding to the sequence 65-77 (apelin 13). This latter fragment may also undergo a pyroglutamylation at the level of its N-terminal glutamine residue. However the presence and/or the concentrations of those peptides in human plasma has been questioned. [12] Recently, 46 different apelin peptides ranging from apelin 55 (proapelin) to apelin 12 have been identified in bovine colostrum, including C-ter truncated isoforms. [13]

Physiological functions

The sites of receptor expression are linked to the different functions played by apelin in the organism.

Vascular

Vascular expression of the receptor [14] [15] participates in the control of blood pressure [6] and its activation promotes the formation of new blood vessels (angiogenesis). [15] [16] [17] [18] The blood pressure-lowering (hypotensive) effect of apelin results from the activation of receptors expressed at the surface of endothelial cells. [14] [15] This activation induces the release of nitric oxide (NO), [19] a potent vasodilator, which induces relaxation of the smooth muscle cells of artery wall. Studies performed on mice knocked out for the apelin receptor gene [20] have suggested the existence of a balance between angiotensin II signalling (which increases blood pressure)e and apelin signalling (which lowers it). The angiogenic activity is the consequence of apelin action on the proliferation and migration of the endothelial cells. Apelin activates signal transduction cascades inside the cell, including extracellular signal-regulated kinases (ERKs), protein kinase B (PKB, also known as Akt), and p70 s6 kinase phosphorylation, [16] [21] which lead to the proliferation of endothelial cells and the formation of new blood vessels. [17] Genetic knockout of the apelin gene is associated with a delay in the development of the retinal vasculature. [22]

Cardiac

The apelin receptor is expressed early during the embryonic development of the heart, where it regulates the migration of cell progenitors fated to differentiate into cardiomyocytes, the contractile cells of the heart. [23] [24] Its expression is also detected in the cardiomyocytes of the adult where apelin behaves as one of the most potent stimulator of cardiac contractility. [7] [25] [26] Aged apelin knockout mice develop progressive impairment of cardiac contractility. [27] Apelin acts as a mediator of the cardiovascular control, including for blood pressure and blood flow. It is one of the most potent stimulators of cardiac contractility yet identified, and plays a role in cardiac tissue remodeling. Apelin levels are increased in left ventricles of patients with chronic heart failure and also in patients with chronic liver disease. [28]

Exercise

The plasma concentration of apelin is shown to increase during exercise. [29] Paradoxically, exogenous apelin in healthy volunteers reduced VO2 peak (peak oxygen consumption) in an endurance test. [30]

Brain

Apelin receptor is also expressed in the neurons of brain areas involved in regulating water and food intake. [6] [31] [32] Apelin injection increases water intake [6] and apelin decreases the hypothalamic secretion of the antidiuretic hormone vasopressin. [33] This diuretic effect of apelin in association with its hypotensive effect participates in the homeostatic regulation of body fluid. Apelin is also detected in brain areas which control appetite, but its effects on food intake are very contradictory. [34] [35] [36]

Adipose tissue

Apelin is expressed and secreted by adipocytes, and its production is increased during adipocyte differentiation and is stimulated by insulin. [37] Most obese people have elevated levels of insulin, which may therefore be the reason why obese people have been reported to also have elevated levels of apelin. [37]

Digestive

Apelin receptor is expressed in several cell types of the gastro-intestinal tract  : stomach enterochromaffine-like cells; [38] [39] unknown cells of endocrine pancreas, [40] colon epithelial cells. [41] In stomach, activation of receptors on enterochromaffine-like cells by apelin secreted by parietal cells can inhibit histamine release by enterochromaffine-like cells, which in turn decreases acid secretion by parietal cells. [39] In pancreas, apelin inhibits the insulin secretion induced by glucose. [42] This inhibition reveals the functional interdependency between apelin signalling and insulin signalling observed at the adipocyte level where insulin stimulate apelin production. [37] Recently, receptor expression was also detected in skeletic muscle cells. Its activation is involved in glucose uptake and participates in the control of glucose blood levels glycemia. [43]

Bone

Receptor expression is also observed at the surface of osteoblasts, the cell progenitors involved in bone formation. [44]

Muscle aging

Muscle apelin expression decreases with age in rodents and humans. [45] By supplementing aged mice with exogenous apelin, Cedric Dray, Philippe Valet, and their colleagues demonstrated that the peptide was able to promote muscle hypertrophy and consequently induced a gain in strength. [45] This study also demonstrated that apelin targets muscle cells during aging by different and complementary pathways: it acts on muscle metabolism by activating an AMPK-dependent mitochondria biogenesis, it promotes autophagy and decreases inflammation in aged mice. [45] Moreover, apelin receptor is also present on muscle stem cells and promotes in vitro and in vivo cellular proliferation and differentiation of these cells into mature muscle cells that participate in muscle regeneration. Finally, muscle apelin could be used as a biomarker of physical exercise success in aged individuals since its production is correlated to the benefit of a chronic physical exercise in aged individuals. [45]

In late 2022, the longevity therapeutics company BioAge announced that its licensed, orally-available apelin receptor agonist BGE-105 had greatly decreased muscle loss and sustained muscle quality and muscle protein synthesis during 10 days of bed rest in healthy volunteers aged 65 or older participating in a double-blind, placebo-controlled Phase 1b trial. [46] They plan to proceed to a Phase 2 trial in older patients who are on ventilators in the intensive care unit (ICU). Such patients suffer both diaphragm atrophy (the weakening of the muscles that allow one to inhale and exhale, which atrophy dangerously due to disuse during time on a ventilator [47] [48] [49] ) and critical illness myopathy (the broad weakening of the muscles during extended bed rest). Each of these conditions are associated with poor functional recovery and substantially increased risk of death after illness. [46]

Related Research Articles

<span class="mw-page-title-main">Lipoprotein lipase</span> Mammalian protein found in Homo sapiens

Lipoprotein lipase (LPL) (EC 3.1.1.34, systematic name triacylglycerol acylhydrolase (lipoprotein-dependent)) is a member of the lipase gene family, which includes pancreatic lipase, hepatic lipase, and endothelial lipase. It is a water-soluble enzyme that hydrolyzes triglycerides in lipoproteins, such as those found in chylomicrons and very low-density lipoproteins (VLDL), into two free fatty acids and one monoacylglycerol molecule:

<span class="mw-page-title-main">Endothelin</span>

Endothelins are peptides with receptors and effects in many body organs. Endothelin constricts blood vessels and raises blood pressure. The endothelins are normally kept in balance by other mechanisms, but when overexpressed, they contribute to high blood pressure (hypertension), heart disease, and potentially other diseases.

<span class="mw-page-title-main">Insulin-like growth factor 2</span> Protein hormone

Insulin-like growth factor 2 (IGF-2) is one of three protein hormones that share structural similarity to insulin. The MeSH definition reads: "A well-characterized neutral peptide believed to be secreted by the liver and to circulate in the blood. It has growth-regulating, insulin-like and mitogenic activities. The growth factor has a major, but not absolute, dependence on somatotropin. It is believed to be a major fetal growth factor in contrast to insulin-like growth factor 1 (IGF-1), which is a major growth factor in adults."

<span class="mw-page-title-main">CCL2</span> Mammalian protein found in Homo sapiens

The chemokine ligand 2 (CCL2) is also referred to as monocyte chemoattractant protein 1 (MCP1) and small inducible cytokine A2. CCL2 is a small cytokine that belongs to the CC chemokine family. CCL2 tightly regulates cellular mechanics and thereby recruits monocytes, memory T cells, and dendritic cells to the sites of inflammation produced by either tissue injury or infection.

<span class="mw-page-title-main">Glucagon-like peptide-1 receptor</span> Receptor activated by peptide hormone GLP-1

The glucagon-like peptide-1 receptor (GLP1R) is a G protein-coupled receptor (GPCR) found on beta cells of the pancreas and on neurons of the brain. It is involved in the control of blood sugar level by enhancing insulin secretion. In humans it is synthesised by the gene GLP1R, which is present on chromosome 6. It is a member of the glucagon receptor family of GPCRs. GLP1R is composed of two domains, one extracellular (ECD) that binds the C-terminal helix of GLP-1, and one transmembrane (TMD) domain that binds the N-terminal region of GLP-1. In the TMD domain there is a fulcrum of polar residues that regulates the biased signaling of the receptor while the transmembrane helical boundaries and extracellular surface are a trigger for biased agonism.

<span class="mw-page-title-main">Gastric inhibitory polypeptide receptor</span> Protein-coding gene in the species Homo sapiens

The gastric inhibitory polypeptide receptor (GIP-R), also known as the glucose-dependent insulinotropic polypeptide receptor, is a protein that in humans is encoded by the GIPR gene.

<span class="mw-page-title-main">Peroxisome proliferator-activated receptor gamma</span> Nuclear receptor protein found in humans

Peroxisome proliferator-activated receptor gamma, also known as the glitazone reverse insulin resistance receptor, or NR1C3 is a type II nuclear receptor functioning as a transcription factor that in humans is encoded by the PPARG gene.

<span class="mw-page-title-main">Apelin receptor</span> Protein-coding gene in the species Homo sapiens

The Apelin Receptor is a G protein-coupled receptor. APLNR possesses two endogenous ligands which are APELIN and ELABELA. The structure of APLNR was resolved in 2017

<span class="mw-page-title-main">KiSS1-derived peptide receptor</span> Mammalian protein found in Homo sapiens

The KiSS1-derived peptide receptor is a G protein-coupled receptor which binds the peptide hormone kisspeptin (metastin). Kisspeptin is encoded by the metastasis suppressor gene KISS1, which is expressed in a variety of endocrine and gonadal tissues. Activation of the kisspeptin receptor is linked to the phospholipase C and inositol trisphosphate second messenger cascades inside the cell.

<span class="mw-page-title-main">Interleukin 8 receptor, beta</span> Mammalian protein found in Homo sapiens

Interleukin 8 receptor, beta is a chemokine receptor. IL8RB is also known as CXCR2, and CXCR2 is now the IUPHAR Committee on Receptor Nomenclature and Drug classification-recommended name.

<span class="mw-page-title-main">CALCRL</span> Mammalian protein found in Homo sapiens

Calcitonin receptor-like (CALCRL), also known as the calcitonin receptor-like receptor (CRLR), is a human protein; it is a receptor for calcitonin gene-related peptide.

<span class="mw-page-title-main">Formyl peptide receptor 2</span> Protein-coding gene in the species Homo sapiens

N-formyl peptide receptor 2 (FPR2) is a G-protein coupled receptor (GPCR) located on the surface of many cell types of various animal species. The human receptor protein is encoded by the FPR2 gene and is activated to regulate cell function by binding any one of a wide variety of ligands including not only certain N-Formylmethionine-containing oligopeptides such as N-Formylmethionine-leucyl-phenylalanine (FMLP) but also the polyunsaturated fatty acid metabolite of arachidonic acid, lipoxin A4 (LXA4). Because of its interaction with lipoxin A4, FPR2 is also commonly named the ALX/FPR2 or just ALX receptor.

<span class="mw-page-title-main">TEK tyrosine kinase</span> Protein-coding gene in the species Homo sapiens

Angiopoietin-1 receptor also known as CD202B is a protein that in humans is encoded by the TEK gene. Also known as TIE2, it is an angiopoietin receptor.

<span class="mw-page-title-main">CMKLR1</span> Protein-coding gene in humans

Chemokine like receptor 1 also known as ChemR23 is a protein that in humans is encoded by the CMKLR1 gene. Chemokine receptor-like 1 is a G protein-coupled receptor for the chemoattractant adipokine chemerin and the omega-3 fatty acid eicosapentaenoic acid-derived specialized pro-resolving molecule, resolvin E1. The murine receptor that shares almost 80% homology with the human receptor, is called Dez.

Prostaglandin DP<sub>2</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin D2 receptor 2 (DP2 or CRTH2) is a human protein encoded by the PTGDR2 gene and GPR44. DP2 has also been designated as CD294 (cluster of differentiation 294). It is a member of the class of prostaglandin receptors which bind with and respond to various prostaglandins. DP2 along with Prostaglandin DP1 receptor are receptors for prostaglandin D2 (PGD2). Activation of DP2 by PGD2 or other cognate receptor ligands has been associated with certain physiological and pathological responses, particularly those associated with allergy and inflammation, in animal models and certain human diseases.

<span class="mw-page-title-main">Free fatty acid receptor 4</span> Protein-coding gene in the species Homo sapiens

Free Fatty acid receptor 4 (FFAR4), also termed G-protein coupled receptor 120 (GPR120), is a protein that in humans is encoded by the FFAR4 gene. This gene is located on the long arm of chromosome 10 at position 23.33. G protein-coupled receptors reside on their parent cells' surface membranes, bind any one of the specific set of ligands that they recognize, and thereby are activated to trigger certain responses in their parent cells. FFAR4 is a rhodopsin-like GPR in the broad family of GPRs which in humans are encoded by more than 800 different genes. It is also a member of a small family of structurally and functionally related GPRs that include at least three other free fatty acid receptors (FFARs) viz., FFAR1, FFAR2, and FFAR3. These four FFARs bind and thereby are activated by certain fatty acids.

Prostaglandin EP<sub>1</sub> receptor Protein-coding gene in the species Homo sapiens

Prostaglandin E2 receptor 1 (EP1) is a 42kDa prostaglandin receptor encoded by the PTGER1 gene. EP1 is one of four identified EP receptors, EP1, EP2, EP3, and EP4 which bind with and mediate cellular responses principally to prostaglandin E2) (PGE2) and also but generally with lesser affinity and responsiveness to certain other prostanoids (see Prostaglandin receptors). Animal model studies have implicated EP1 in various physiological and pathological responses. However, key differences in the distribution of EP1 between these test animals and humans as well as other complicating issues make it difficult to establish the function(s) of this receptor in human health and disease.

<span class="mw-page-title-main">Relaxin/insulin-like family peptide receptor 2</span> Protein-coding gene in the species Homo sapiens

Relaxin/insulin-like family peptide receptor 2, also known as RXFP2, is a human G-protein coupled receptor.

<span class="mw-page-title-main">CD47</span> Protein-coding gene in humans

CD47 also known as integrin associated protein (IAP) is a transmembrane protein that in humans is encoded by the CD47 gene. CD47 belongs to the immunoglobulin superfamily and partners with membrane integrins and also binds the ligands thrombospondin-1 (TSP-1) and signal-regulatory protein alpha (SIRPα). CD-47 acts as a don't eat me signal to macrophages of the immune system which has made it a potential therapeutic target in some cancers, and more recently, for the treatment of pulmonary fibrosis.

<span class="mw-page-title-main">Elabela</span> Mammalian peptide found in Homo sapiens

ELABELA is a hormonal peptide that in humans is encoded by the APELA gene. Elabela is one of two endogenous ligands for the G-protein-coupled APLNR receptor.

References

  1. 1 2 3 GRCh38: Ensembl release 89: ENSG00000171388 - Ensembl, May 2017
  2. 1 2 3 GRCm38: Ensembl release 89: ENSMUSG00000037010 - Ensembl, May 2017
  3. "Human PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  4. "Mouse PubMed Reference:". National Center for Biotechnology Information, U.S. National Library of Medicine.
  5. 1 2 3 Tatemoto K, Hosoya M, Habata Y, Fujii R, Kakegawa T, Zou MX, Kawamata Y, Fukusumi S, Hinuma S, Kitada C, Kurokawa T, Onda H, Fujino M (1998). "Isolation and characterization of a novel endogenous peptide ligand for the human APJ receptor". Biochem. Biophys. Res. Commun. 251 (2): 471–6. doi:10.1006/bbrc.1998.9489. PMID   9792798.
  6. 1 2 3 4 Lee DK, Cheng R, Nguyen T, Fan T, Kariyawasam AP, Liu Y, Osmond DH, George SR, O'Dowd BF (2000). "Characterization of apelin, the ligand for the APJ receptor". J. Neurochem. 74 (1): 34–41. doi:10.1046/j.1471-4159.2000.0740034.x. PMID   10617103. S2CID   6548112.
  7. 1 2 Szokodi I, Tavi P, Földes G, Voutilainen-Myllylä S, Ilves M, Tokola H, Pikkarainen S, Piuhola J, Rysä J, Tóth M, Ruskoaho H (2002). "Apelin, the novel endogenous ligand of the orphan receptor APJ, regulates cardiac contractility". Circ. Res. 91 (5): 434–40. doi: 10.1161/01.RES.0000033522.37861.69 . PMID   12215493.
  8. Kleinz MJ, Davenport AP (2005). "Emerging roles of apelin in biology and medicine". Pharmacol. Ther. 107 (2): 198–211. doi:10.1016/j.pharmthera.2005.04.001. PMID   15907343.
  9. O'Dowd BF, Heiber M, Chan A, Heng HH, Tsui LC, Kennedy JL, Shi X, Petronis A, George SR, Nguyen T (December 1993). "A human gene that shows identity with the gene encoding the angiotensin receptor is located on chromosome 11". Gene. 136 (1–2): 355–60. doi:10.1016/0378-1119(93)90495-O. PMID   8294032.
  10. Devic E, Paquereau L, Vernier P, Knibiehler B, Audigier Y (October 1996). "Expression of a new G protein-coupled receptor X-msr is associated with an endothelial lineage in Xenopus laevis". Mech. Dev. 59 (2): 129–40. doi: 10.1016/0925-4773(96)00585-0 . PMID   8951791. S2CID   17999883.
  11. Audigier Y (2006-04-07). "Apelin Receptor". UCSD Nature Molecule Pages. doi:10.1038/mp.a000304.01. Archived from the original on 2011-07-22. Retrieved 2009-09-02.
  12. Mesmin C, Dubois M, Becher F, Fenaille F, Ezan E (2010). "Liquid chromatography/tandem mass spectrometry assay for the absolute quantification of the expected circulating apelin peptides in human plasma". Rapid Commun Mass Spectrom. 24 (19): 2875–84. Bibcode:2010RCMS...24.2875M. doi:10.1002/rcm.4718. PMID   20857448.
  13. Mesmin C, Fenaille F, Becher F, Tabet JC, Ezan E (2011). "Identification and characterization of apelin peptides in bovine colostrum and milk by liquid chromatography-mass spectrometry". J Proteome Res. 10 (11): 5222–31. doi:10.1021/pr200725x. PMID   21939284.
  14. 1 2 Devic E, Rizzoti K, Bodin S, Knibiehler B, Audigier Y (June 1999). "Amino acid sequence and embryonic expression of msr/apj, the mouse homolog of Xenopus X-msr and human APJ". Mech. Dev. 84 (1–2): 199–203. doi: 10.1016/S0925-4773(99)00081-7 . PMID   10473142. S2CID   14753955.
  15. 1 2 3 Saint-Geniez M, Masri B, Malecaze F, Knibiehler B, Audigier Y (January 2002). "Expression of the murine msr/apj receptor and its ligand apelin is upregulated during formation of the retinal vessels". Mech. Dev. 110 (1–2): 183–6. doi: 10.1016/S0925-4773(01)00558-5 . PMID   11744380. S2CID   16855047.
  16. 1 2 Masri B, Morin N, Cornu M, Knibiehler B, Audigier Y (December 2004). "Apelin (65-77) activates p70 S6 kinase and is mitogenic for umbilical endothelial cells". FASEB J. 18 (15): 1909–11. doi: 10.1096/fj.04-1930fje . PMID   15385434. S2CID   2013710.
  17. 1 2 Kasai A, Shintani N, Oda M, Kakuda M, Hashimoto H, Matsuda T, Hinuma S, Baba A (December 2004). "Apelin is a novel angiogenic factor in retinal endothelial cells". Biochem. Biophys. Res. Commun. 325 (2): 395–400. doi:10.1016/j.bbrc.2004.10.042. PMID   15530405.
  18. Cox CM, D'Agostino SL, Miller MK, Heimark RL, Krieg PA (August 2006). "Apelin, the ligand for the endothelial G-protein-coupled receptor, APJ, is a potent angiogenic factor required for normal vascular development of the frog embryo". Dev. Biol. 296 (1): 177–89. doi: 10.1016/j.ydbio.2006.04.452 . PMID   16750822.
  19. Tatemoto K, Takayama K, Zou MX, Kumaki I, Zhang W, Kumano K, Fujimiya M (June 2001). "The novel peptide apelin lowers blood pressure via a nitric oxide-dependent mechanism". Regul Pept. 99 (2–3): 87–92. doi:10.1016/S0167-0115(01)00236-1. PMID   11384769. S2CID   3064032.
  20. Ishida J, Hashimoto T, Hashimoto Y, Nishiwaki S, Iguchi T, Harada S, Sugaya T, Matsuzaki H, Yamamoto R, Shiota N, Okunishi H, Kihara M, Umemura S, Sugiyama F, Yagami K, Kasuya Y, Mochizuki N, Fukamizu A (June 2004). "Regulatory roles for APJ, a seven-transmembrane receptor related to angiotensin type 1 receptor in blood pressure in vivo". J. Biol. Chem. 279 (25): 26274–9. doi: 10.1074/jbc.M404149200 . PMID   15087458.
  21. Masri B, Lahlou H, Mazarguil H, Knibiehler B, Audigier Y (January 2002). "Apelin (65-77) activates extracellular signal-regulated kinases via a PTX-sensitive G protein". Biochem. Biophys. Res. Commun. 290 (1): 539–45. doi:10.1006/bbrc.2001.6230. PMID   11779205.
  22. Kasai A, Shintani N, Kato H, Matsuda S, Gomi F, Haba R, Hashimoto H, Kakuda M, Tano Y, Baba A (October 2008). "Retardation of retinal vascular development in apelin-deficient mice". Arterioscler. Thromb. Vasc. Biol. 28 (10): 1717–22. doi: 10.1161/ATVBAHA.108.163402 . PMID   18599802.
  23. Scott IC, Masri B, D'Amico LA, Jin SW, Jungblut B, Wehman AM, Baier H, Audigier Y, Stainier DY (March 2007). "The g protein-coupled receptor agtrl1b regulates early development of myocardial progenitors". Dev. Cell. 12 (3): 403–13. doi: 10.1016/j.devcel.2007.01.012 . PMID   17336906.
  24. Zeng XX, Wilm TP, Sepich DS, Solnica-Krezel L (March 2007). "Apelin and its receptor control heart field formation during zebrafish gastrulation". Dev. Cell. 12 (3): 391–402. doi: 10.1016/j.devcel.2007.01.011 . PMID   17336905.
  25. Berry MF, Pirolli TJ, Jayasankar V, Burdick J, Morine KJ, Gardner TJ, Woo YJ (September 2004). "Apelin has in vivo inotropic effects on normal and failing hearts". Circulation. 110 (11 Suppl 1): II187–93. doi: 10.1161/01.CIR.0000138382.57325.5c . PMID   15364861.
  26. Ashley EA, Powers J, Chen M, Kundu R, Finsterbach T, Caffarelli A, Deng A, Eichhorn J, Mahajan R, Agrawal R, Greve J, Robbins R, Patterson AJ, Bernstein D, Quertermous T (January 2005). "The endogenous peptide apelin potently improves cardiac contractility and reduces cardiac loading in vivo". Cardiovasc. Res. 65 (1): 73–82. doi:10.1016/j.cardiores.2004.08.018. PMC   2517138 . PMID   15621035.
  27. Kuba K, Zhang L, Imai Y, Arab S, Chen M, Maekawa Y, Leschnik M, Leibbrandt A, Markovic M, Makovic M, Schwaighofer J, Beetz N, Musialek R, Neely GG, Komnenovic V, Kolm U, Metzler B, Ricci R, Hara H, Meixner A, Nghiem M, Chen X, Dawood F, Wong KM, Sarao R, Cukerman E, Kimura A, Hein L, Thalhammer J, Liu PP, Penninger JM (August 2007). "Impaired heart contractility in Apelin gene-deficient mice associated with aging and pressure overload". Circ. Res. 101 (4): e32–42. doi: 10.1161/CIRCRESAHA.107.158659 . PMID   17673668.
  28. Principe A, Melgar-Lesmes P, Fernández-Varo G, Del Arbol LR, Ros J, Morales-Ruiz M, Bernardi M, Arroyo V, Jiménez W (2008). "The hepatic apelin system: A new therapeutic target for liver disease". Hepatology. 48 (4): 1193–1201. doi: 10.1002/hep.22467 . PMID   18816630.
  29. Kechyn S, Barnes G, Howard L (2015). "Assessing dynamic changes in plasma apelin concentration in response to maximal exercise in man". European Respiratory Journal. 46: PA2316. doi:10.1183/13993003.congress-2015.PA2316.
  30. Kechyn S, Barnes G, Thongmee A, Howard L (September 2015). "Effect of apelin on cardiopulmonary performance during endurance exercise". European Respiratory Journal. 46 (suppl 59): 2241. doi:10.1183/13993003.congress-2015.PA2241.
  31. O'Carroll AM, Selby TL, Palkovits M, Lolait SJ (June 2000). "Distribution of mRNA encoding B78/apj, the rat homologue of the human APJ receptor, and its endogenous ligand apelin in brain and peripheral tissues". Biochim. Biophys. Acta. 1492 (1): 72–80. doi:10.1016/S0167-4781(00)00072-5. PMID   11004481.
  32. De Mota et al., 2000
  33. De Mota N, Lenkei Z, Llorens-Cortès C (December 2000). "Cloning, pharmacological characterization and brain distribution of the rat apelin receptor". Neuroendocrinology. 72 (6): 400–7. doi:10.1159/000054609. PMID   11146423. S2CID   39313631.
  34. Taheri S, Murphy K, Cohen M, Sujkovic E, Kennedy A, Dhillo W, Dakin C, Sajedi A, Ghatei M, Bloom S (March 2002). "The effects of centrally administered apelin-13 on food intake, water intake and pituitary hormone release in rats". Biochem. Biophys. Res. Commun. 291 (5): 1208–12. doi:10.1006/bbrc.2002.6575. PMID   11883945.
  35. Sunter D, Hewson AK, Dickson SL (December 2003). "Intracerebroventricular injection of apelin-13 reduces food intake in the rat". Neurosci. Lett. 353 (1): 1–4. doi:10.1016/S0304-3940(03)00351-3. PMID   14642423. S2CID   43645121.
  36. O'Shea M, Hansen MJ, Tatemoto K, Morris MJ (June 2003). "Inhibitory effect of apelin-12 on nocturnal food intake in the rat". Nutr Neurosci. 6 (3): 163–7. doi:10.1080/1028415031000111273. PMID   12793520. S2CID   37941683.
  37. 1 2 3 Boucher J, Masri B, Daviaud D, Gesta S, Guigné C, Mazzucotelli A, Castan-Laurell I, Tack I, Knibiehler B, Carpéné C, Audigier Y, Saulnier-Blache JS, Valet P (April 2005). "Apelin, a newly identified adipokine up-regulated by insulin and obesity". Endocrinology. 146 (4): 1764–71. doi: 10.1210/en.2004-1427 . PMID   15677759.
  38. Wang G, Anini Y, Wei W, Qi X, OCarroll AM, Mochizuki T, Wang HQ, Hellmich MR, Englander EW, Greeley GH (March 2004). "Apelin, a new enteric peptide: localization in the gastrointestinal tract, ontogeny, and stimulation of gastric cell proliferation and of cholecystokinin secretion". Endocrinology. 145 (3): 1342–8. doi: 10.1210/en.2003-1116 . PMID   14670994.
  39. 1 2 Lambrecht NW, Yakubov I, Zer C, Sachs G (March 2006). "Transcriptomes of purified gastric ECL and parietal cells: identification of a novel pathway regulating acid secretion". Physiol. Genomics. 25 (1): 153–65. doi:10.1152/physiolgenomics.00271.2005. PMID   16403840.
  40. Sorhede Winzell et al., 2005
  41. Wang G, Kundu R, Han S, Qi X, Englander EW, Quertermous T, Greeley GH (August 2009). "Ontogeny of apelin and its receptor in the rodent gastrointestinal tract". Regul. Pept. 158 (1–3): 32–9. doi:10.1016/j.regpep.2009.07.016. PMC   2761510 . PMID   19660504.
  42. Sörhede Winzell M, Magnusson C, Ahrén B (November 2005). "The apj receptor is expressed in pancreatic islets and its ligand, apelin, inhibits insulin secretion in mice". Regul. Pept. 131 (1–3): 12–7. doi:10.1016/j.regpep.2005.05.004. PMID   15970338. S2CID   18224695.
  43. Dray C, Knauf C, Daviaud D, Waget A, Boucher J, Buléon M, Cani PD, Attané C, Guigné C, Carpéné C, Burcelin R, Castan-Laurell I, Valet P (November 2008). "Apelin stimulates glucose utilization in normal and obese insulin-resistant mice". Cell Metab. 8 (5): 437–45. doi: 10.1016/j.cmet.2008.10.003 . PMID   19046574.
  44. Xie H, Tang SY, Cui RR, Huang J, Ren XH, Yuan LQ, Lu Y, Yang M, Zhou HD, Wu XP, Luo XH, Liao EY (May 2006). "Apelin and its receptor are expressed in human osteoblasts". Regul. Pept. 134 (2–3): 118–25. doi:10.1016/j.regpep.2006.02.004. PMID   16563531. S2CID   20819559.
  45. 1 2 3 4 Vinel C, Lukjanenko L, Batut A, Deleruyelle S, Pradère J, Le Gonidec S, Dortignac A, Geoffre N, Pereira O, Karaz S, Lee U, Camus M, Chaoui K, Mouisel E, Bigot A, Mouly V, Vigneau M, Pagano A, Chopard A, Pillard F, Guyonnet S, Cesari M, Burlet O, Pahor M, Feige J, Vellas B, Valet P, Dray C (30 July 2018). "The exerkine apelin reverses age-associated sarcopenia". Nature Medicine. 24 (9): 1360–1371. doi:10.1038/s41591-018-0131-6. PMID   30061698. S2CID   51876150.
  46. 1 2 "BioAge Announces Positive Topline Results for BGE-105 in Phase 1b Clinical Trial Evaluating Muscle Atrophy in Older Volunteers at Bed Rest". BusinessWire . 5 December 2022. Retrieved 14 January 2023.
  47. Jaber S, Petrof BJ, Jung B, Chanques G, Berthet JP, Rabuel C, et al. (February 2011). "Rapidly progressive diaphragmatic weakness and injury during mechanical ventilation in humans". American Journal of Respiratory and Critical Care Medicine. 183 (3): 364–371. doi:10.1164/rccm.201004-0670OC. PMID   20813887.
  48. Goligher EC, Dres M, Fan E, Rubenfeld GD, Scales DC, Herridge MS, et al. (January 2018). "Mechanical Ventilation-induced Diaphragm Atrophy Strongly Impacts Clinical Outcomes". American Journal of Respiratory and Critical Care Medicine. 197 (2): 204–213. doi:10.1164/rccm.201703-0536OC. PMID   28930478. S2CID   3716085.
  49. Levine S, Nguyen T, Taylor N, Friscia ME, Budak MT, Rothenberg P, et al. (March 2008). "Rapid disuse atrophy of diaphragm fibers in mechanically ventilated humans". The New England Journal of Medicine. 358 (13): 1327–1335. doi: 10.1056/NEJMoa070447 . PMID   18367735.

Further reading