Approach and departure angles

Last updated
Approach (a) and departure angle (b) of a vehicle Approach and departure angle.svg
Approach (α) and departure angle (β) of a vehicle

Approach angle is the maximum angle of a ramp onto which a vehicle can climb from a horizontal plane without interference. [1] It is defined as the angle between the ground and the line drawn between the front tire and the lowest-hanging part of the vehicle at the front overhang. [2] [3] Departure angle is its counterpart at the rear of the vehicle – the maximum ramp angle from which the car can descend without damage. Approach and departure angles are also referred to as ramp angles. [4]

Contents

Approach and departure angles are indicators of off-road ability of the vehicle: they indicate how steep of obstacles, such as rocks or logs, the vehicle can negotiate according to its body shape alone. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Tire</span> Ring-shaped covering that fits around a wheels rim

A tire is a ring-shaped component that surrounds a wheel's rim to transfer a vehicle's load from the axle through the wheel to the ground and to provide traction on the surface over which the wheel travels. Most tires, such as those for automobiles and bicycles, are pneumatically inflated structures, providing a flexible cushion that absorbs shock as the tire rolls over rough features on the surface. Tires provide a footprint, called a contact patch, designed to match the vehicle's weight and the bearing on the surface that it rolls over by exerting a pressure that will avoid deforming the surface.

<span class="mw-page-title-main">Vehicle identification number</span> System for identifying vehicles

A vehicle identification number is a unique code, including a serial number, used by the automotive industry to identify individual motor vehicles, towed vehicles, motorcycles, scooters and mopeds, as defined by the International Organization for Standardization in ISO 3779 and ISO 4030.

<span class="mw-page-title-main">Steering</span> The control of the direction of motion of vehicles and other objects

Steering is the control of the direction of motion or the components that enable its control. Steering is achieved through various arrangements, among them ailerons for airplanes, rudders for boats, cylic tilting of rotors for helicopters, and many more.

<span class="mw-page-title-main">Bumper (car)</span> Structure at front and rear ends of a car

A bumper is a structure attached to or integrated with the front and rear ends of a motor vehicle, to absorb impact in a minor collision, ideally minimizing repair costs. Stiff metal bumpers appeared on automobiles as early as 1904 that had a mainly ornamental function. Numerous developments, improvements in materials and technologies, as well as greater focus on functionality for protecting vehicle components and improving safety have changed bumpers over the years. Bumpers ideally minimize height mismatches between vehicles and protect pedestrians from injury. Regulatory measures have been enacted to reduce vehicle repair costs and, more recently, impact on pedestrians.

<span class="mw-page-title-main">Vehicle blind spot</span> Area around vehicle that cannot be directly observed by the driver while at the controls

A blind spot in a vehicle or vehicle blind spot is an area around the vehicle that cannot be directly seen by the driver while at the controls, under existing circumstances. In transport, driver visibility is the maximum distance at which the driver of a vehicle can see and identify prominent objects around the vehicle. Visibility is primarily determined by weather conditions and by a vehicle's design. The parts of a vehicle that influence visibility include the windshield, the dashboard and the pillars. Good driver visibility is essential to safe road traffic.

<span class="mw-page-title-main">Slip angle</span> Term or maneuver in vehicle dynamics

In vehicle dynamics, slip angle or sideslip angle is the angle between the direction in which a wheel is pointing and the direction in which it is actually traveling. This slip angle results in a force, the cornering force, which is in the plane of the contact patch and perpendicular to the intersection of the contact patch and the midplane of the wheel. This cornering force increases approximately linearly for the first few degrees of slip angle, then increases non-linearly to a maximum before beginning to decrease.

<span class="mw-page-title-main">Advanced driver-assistance system</span> Electronic systems that help a vehicle driver while driving or parking

Advanced driver-assistance systems (ADAS) are technologies that assist drivers with the safe operation of a vehicle. Through a human-machine interface, ADAS increase car and road safety. ADAS use automated technology, such as sensors and cameras, to detect nearby obstacles or driver errors, and respond accordingly. ADAS can enable various levels of autonomous driving.

<span class="mw-page-title-main">Off-roading</span> Activity of driving on unsurfaced roads or tracks

Off-roading is the act of driving or riding in a vehicle on unpaved surfaces such as sand, dirt, gravel, riverbeds, mud, snow, rocks, or other natural terrain. Off-roading ranges from casual drives with regular vehicles to competitive events with customized vehicles and skilled drivers.

<span class="mw-page-title-main">Caster angle</span> The angle between the vertical axis and the steering axis of a steered wheel, in side view

The caster angle or castor angle is the angular displacement of the steering axis from the vertical axis of a steered wheel in a car, motorcycle, bicycle, other vehicle or a vessel, as seen from the side of the vehicle. The steering axis in a car with dual ball joint suspension is an imaginary line that runs through the center of the upper ball joint to the center of the lower ball joint, or through the center of the kingpin for vehicles having a kingpin.

A glossary of terms relating to automotive design.

<span class="mw-page-title-main">Rim (wheel)</span> Outer part of a wheel on which the tire is mounted

The rim is the "outer edge of a wheel, holding the tire". It makes up the outer circular design of the wheel on which the inside edge of the tire is mounted on vehicles such as automobiles. For example, on a bicycle wheel the rim is a large hoop attached to the outer ends of the spokes of the wheel that holds the tire and tube. In cross-section, the rim is deep in the center and shallow at the outer edges, thus forming a "U" shape that supports the bead of the tire casing.

<span class="mw-page-title-main">CLEVER</span>

The CLEVER is a type of tilting three-wheeled motor vehicle that was developed in a collaboration between the University of Bath, BMW and a number of other partners from across Europe. CLEVER is designed as an alternative to conventional means of personal urban transport. The narrow body endows it with some of the manoeuvrability and congestion avoiding capability of a motorcycle, whilst offering comparable weather and impact protection to a car. Carbon emissions are reduced as a function of low weight and a small frontal area. The narrow track width requires that CLEVER tilts into corners to maintain stability; thus it is fitted with a Direct Tilt Control (DTC) system that uses hydraulic actuators linking the cabin to the non-tilting rear engine module.

<span class="mw-page-title-main">Traffic barrier</span> Barrier installed within medians of and next to roads to prevent vehicle collisions

Traffic barriers keep vehicles within their roadway and prevent them from colliding with dangerous obstacles such as boulders, sign supports, trees, bridge abutments, buildings, walls, and large storm drains, or from traversing steep (non-recoverable) slopes or entering deep water. They are also installed within medians of divided highways to prevent errant vehicles from entering the opposing carriageway of traffic and help to reduce head-on collisions. Some of these barriers, designed to be struck from either side, are called median barriers. Traffic barriers can also be used to protect vulnerable areas like school yards, pedestrian zones, and fuel tanks from errant vehicles. In pedestrian zones, like school yards, they also prevent children or other pedestrians from running onto the road.

<span class="mw-page-title-main">Turning radius</span> Minimum dimension for a vehicle to make a turn

The turning radius of a vehicle defines the minimum dimension of available space required for that vehicle to make a semi-circular U-turn without skidding. The Oxford English Dictionary describes turning circle as "the smallest circle within which a ship, motor vehicle, etc., can be turned round completely". The term thus refers to a theoretical minimal circle in which for example an aeroplane, a ground vehicle or a watercraft can be turned around.

Cornering Brake Control (CBC) is an automotive safety measure that improves handling performance by distributing the force applied on the wheels of a vehicle while turning corners. Introduced by BMW in 1992, the technology is now featured in modern electric and gasoline vehicles such as cars, motorcycles, and trucks. CBC is often included under the Electronic Stability Control (ESC) safety feature provided by vehicle manufacturers.

The Federal Motor Vehicle Safety Standards (FMVSS) are U.S. federal vehicle regulations specifying design, construction, performance, and durability requirements for motor vehicles and regulated automobile safety-related components, systems, and design features. They are the U.S. counterpart to the UN Regulations developed by the World Forum for Harmonization of Vehicle Regulations and recognized to varying degree by most countries except the United States.

<span class="mw-page-title-main">Overhang (vehicles)</span>

Overhangs are the lengths of a road vehicle which extend beyond the wheelbase at the front and rear. They are normally described as front overhang and rear overhang. Practicality, style, and performance are affected by the size and weight of overhangs.

<span class="mw-page-title-main">Breakover angle</span> Vehicle measurement which determines how easily the chassis may touch the ground between the axles

Breakover angle or rampover angle is the maximum possible supplementary angle that a vehicle, with at least one forward wheel and one rear wheel, can drive over without the apex of that angle touching any point of the vehicle other than the wheels. This definition is contingent upon the wheels being in continuous contact with the supporting surface(s). Breakover angle differs from ground clearance, which is the shortest distance between the ground and lowest point on the vehicle.

This glossary of automotive terms is a list of definitions of terms and concepts related to automobiles, including their parts, operation, and manufacture, as well as automotive engineering, auto repair, and the automotive industry in general. For more specific terminology regarding the design and classification of various automobile styles, see Glossary of automotive design; for terms related to transportation by road, see Glossary of road transport terms; for competitive auto racing, see Glossary of motorsport terms.

References

  1. "angle of approach". The Free Dictionary by Farlex. Retrieved 2024-11-19.
  2. 1 2 "Angle of Approach". carlist.com. Archived from the original on 2015-03-28. Retrieved 2014-12-04.
  3. "U.S. Code of Federal Regulations - CFR 523.2 - Title 49", Electronic Code of Federal Regulations (e-CFR), Cornell University Law School, retrieved 2014-12-04, Approach angle means the smallest angle, in a plane side view of an automobile, formed by the level surface on which the automobile is standing and a line tangent to the front tire static loaded radius arc and touching the underside of the automobile forward of the front tire.
  4. Lane, Keith (2002). Automotive A-Z: Lane's Complete Dictionary of Automotive Terms. Veloce Publishing Ltd. p. 376. ISBN   978-1-903706-40-4.[ dead link ]