Armstrong limit

Last updated
The Armstrong limit is above most of Earth's atmosphere. High-altitude balloon - ATLAS0 mission.jpg
The Armstrong limit is above most of Earth's atmosphere.

The Armstrong limit or Armstrong's line is a measure of altitude above which atmospheric pressure is sufficiently low that water boils at the normal temperature of the human body. Exposure to pressure below this limit results in a rapid loss of consciousness, followed by a series of changes to cardiovascular and neurological functions, and eventually death, unless pressure is restored within 60–90 seconds. [1] On Earth, the limit is around 18–19 km (11–12 mi; 59,000–62,000 ft) above sea level, [1] [2] above which atmospheric air pressure drops below 0.0618 atm (6.3 kPa, 47 mmHg, or about 1 psi). The U.S. Standard Atmospheric model sets the Armstrong limit at an altitude of 63,000 feet (19,202 m).

Contents

The term is named after United States Air Force General Harry George Armstrong, who was the first to recognize this phenomenon. [3]

Effect on body fluids

Atmospheric pressure comparison
LocationPressure
kPa psi atm
Olympus Mons summit0.0720.01040.00071
Mars average 0.6100.08850.00602
Hellas Planitia bottom1.160.1680.0114
Armstrong limit6.250.9060.0617
Mount Everest summit [4] 33.74.890.333
Earth sea level101.314.691.000
Dead Sea level [5] 106.715.481.053
Surface of Venus [6] 9,2001,33091

At or above the Armstrong limit, exposed body fluids such as saliva, tears, urine, and the liquids wetting the alveoli within the lungs—but not vascular blood (blood within the circulatory system)—will boil away if the subject does not wear a full-body pressure suit. The NASA technical report Rapid (Explosive) Decompression Emergencies in Pressure-Suited Subjects, which discusses the brief accidental exposure of a human to near vacuum, notes: "The subject later reported that ... his last conscious memory was of the saliva on his tongue beginning to boil." [7]

If the cockpit lost pressure while the aircraft was above the Armstrong limit, even a positive pressure oxygen mask (shown) could not protect the pilot. F-16 pilot, closeup, canopy blemishes cleaned.jpg
If the cockpit lost pressure while the aircraft was above the Armstrong limit, even a positive pressure oxygen mask (shown) could not protect the pilot.

At the nominal body temperature of 37 °C (99 °F), water has a vapour pressure of 6.3 kilopascals (47 mmHg); which is to say, at an ambient pressure of 6.3 kilopascals (47 mmHg), the boiling point of water is 37 °C (99 °F). A pressure of 6.3 kPa—the Armstrong limit—is about 1/16 of the standard sea-level atmospheric pressure of 101.3 kilopascals (760 mmHg). At higher altitudes water vapour from ebullism will add to the decompression bubbles of nitrogen gas and cause the body tissues to swell up, though the tissues and the skin are strong enough not to burst under the internal pressure of vapourised water. Formulas for calculating the standard pressure at a given altitude vary—as do the precise pressures one will actually measure at a given altitude on a given day—but a common formula[ citation needed ] shows that 6.3 kPa is typically found at an altitude of 19,000 m (62,000 ft).

A pressure suit developed for high altitude, 1937 (worn by Mario Pezzi) Caproni Ca.161 pilot.jpg
A pressure suit developed for high altitude, 1937 (worn by Mario Pezzi)

Hypoxia below the Armstrong limit

Well below the Armstrong limit, humans typically require supplemental oxygen in order to avoid hypoxia. For most people, this is typically needed at altitudes above 4,500 m (15,000 ft). Commercial jetliners are required to maintain cabin pressurization at a cabin altitude of not greater than 2,400 m (8,000 ft). U.S. regulations on general aviation aircraft (non-airline, non-government flights) require that the minimum required flight crew, but not the passengers, be on supplemental oxygen if the plane spends more than half an hour at a cabin altitude above 3,800 m (12,500 ft). The minimum required flight crew must be on supplemental oxygen if the plane spends any time above a cabin altitude of 4,300 m (14,000 ft), and even the passengers must be provided with supplemental oxygen above a cabin altitude of 4,500 m (15,000 ft). [8] Skydivers, who are at altitude only briefly before jumping, do not normally exceed 4,500 m (15,000 ft). [9]

Historical significance

Comparison of a graph of International Standard Atmosphere temperature and pressure with the Armstrong limit and approximate altitudes of various objects Comparison International Standard Atmosphere space diving.svg
Comparison of a graph of International Standard Atmosphere temperature and pressure with the Armstrong limit and approximate altitudes of various objects

The Armstrong limit describes the altitude associated with an objective, precisely defined natural phenomenon: the vapor pressure of body-temperature water. In the late 1940s, it represented a new fundamental, hard limit to altitude that went beyond the somewhat subjective observations of human physiology and the timedependent effects of hypoxia experienced at lower altitudes. Pressure suits had long been worn at altitudes well below the Armstrong limit to avoid hypoxia. In 1936, Francis Swain of the Royal Air Force reached 15,230 m (49,970 ft) flying a Bristol Type 138 while wearing a pressure suit. [10] Two years later Italian military officer Mario Pezzi set an altitude record of 17,083 m (56,047 ft), wearing a pressure suit in his Caproni Ca.161bis biplane even though he was well below the altitude at which body-temperature water boils.

A pressure suit is normally required at around 15,000 m (49,000 ft) for a well conditioned and experienced pilot to safely operate an aircraft in unpressurized cabins. [11] In an unpressurized cockpit at altitudes greater than 11,900 m (39,000 ft) above sea level, the physiological reaction, even when breathing pure oxygen, is hypoxia—inadequate oxygen level causing confusion and eventual loss of consciousness. Air contains 20.95% oxygen. At 11,900 m (39,000 ft), breathing pure oxygen through an unsealed face mask, one is breathing the same partial pressure of oxygen as one would experience with regular air at around 3,600 m (11,800 ft) above sea level[ citation needed ]. At higher altitudes, oxygen must be delivered through a sealed mask with increased pressure, to maintain a physiologically adequate partial pressure of oxygen. If the user does not wear a pressure suit or a counter-pressure garment that restricts the movement of their chest, the high-pressure air can cause damage to the lungs.

For modern military aircraft such as the United States' F22 and F35, both of which have operational altitudes of 18,000 m (59,000 ft) or more, the pilot wears a "counter-pressure garment", which is a gsuit with high-altitude capabilities. In the event the cockpit loses pressure, the oxygen system switches to a positive-pressure mode to deliver above-ambient-pressure oxygen to a specially sealing mask as well as to proportionally inflate the counter-pressure garment. The garment counters the outward expansion of the pilot's chest to prevent pulmonary barotrauma until the pilot can descend to a safe altitude. [12]

Technological Developments

See also

Related Research Articles

<span class="mw-page-title-main">Hypoxia (medicine)</span> Medical condition of lack of oxygen in the tissues

Hypoxia is a condition in which the body or a region of the body is deprived of adequate oxygen supply at the tissue level. Hypoxia may be classified as either generalized, affecting the whole body, or local, affecting a region of the body. Although hypoxia is often a pathological condition, variations in arterial oxygen concentrations can be part of the normal physiology, for example, during strenuous physical exercise.

<span class="mw-page-title-main">Decompression sickness</span> Disorder caused by dissolved gases forming bubbles in tissues

Decompression sickness is a medical condition caused by dissolved gases emerging from solution as bubbles inside the body tissues during decompression. DCS most commonly occurs during or soon after a decompression ascent from underwater diving, but can also result from other causes of depressurisation, such as emerging from a caisson, decompression from saturation, flying in an unpressurised aircraft at high altitude, and extravehicular activity from spacecraft. DCS and arterial gas embolism are collectively referred to as decompression illness.

<span class="mw-page-title-main">Altitude sickness</span> Medical condition due to rapid exposure to low oxygen at high altitude

Altitude sickness, the mildest form being acute mountain sickness (AMS), is a harmful effect of high altitude, caused by rapid exposure to low amounts of oxygen at high elevation. People's bodies can respond to high altitude in different ways. Symptoms of altitude sickness may include headaches, vomiting, tiredness, confusion, trouble sleeping, and dizziness. Acute mountain sickness can progress to high-altitude pulmonary edema (HAPE) with associated shortness of breath or high-altitude cerebral edema (HACE) with associated confusion. Chronic mountain sickness may occur after long-term exposure to high altitude.

<span class="mw-page-title-main">Death zone</span> Altitudes above about 8,000 m (26,000 ft)

In mountaineering, the death zone refers to altitudes above which the pressure of oxygen is insufficient to sustain human life for an extended time span. This point is generally agreed as 8,000 m (26,000 ft), where atmospheric pressure is less than 356 millibars. The concept was conceived in 1953 by Edouard Wyss-Dunant, a Swiss doctor, who called it the lethal zone. All 14 peaks above 8000 m in the death zone are located in the Himalaya and Karakoram regions of Asia.

An uncontrolled decompression is an undesired drop in the pressure of a sealed system, such as a pressurised aircraft cabin or hyperbaric chamber, that typically results from human error, structural failure, or impact, causing the pressurised vessel to vent into its surroundings or fail to pressurize at all.

<span class="mw-page-title-main">Breathing apparatus</span> Equipment allowing or assisting the user to breath in a hostile environment

A breathing apparatus or breathing set is equipment which allows a person to breathe in a hostile environment where breathing would otherwise be impossible, difficult, harmful, or hazardous, or assists a person to breathe. A respirator, medical ventilator, or resuscitator may also be considered to be breathing apparatus. Equipment that supplies or recycles breathing gas other than ambient air in a space used by several people is usually referred to as being part of a life-support system, and a life-support system for one person may include breathing apparatus, when the breathing gas is specifically supplied to the user rather than to the enclosure in which the user is the occupant.

<span class="mw-page-title-main">Oxygen mask</span> Interface between the oxygen delivery system and the human user

An oxygen mask is a mask that provides a method to transfer breathing oxygen gas from a storage tank to the lungs. Oxygen masks may cover only the nose and mouth or the entire face. They may be made of plastic, silicone, or rubber. In certain circumstances, oxygen may be delivered via a nasal cannula instead of a mask.

<span class="mw-page-title-main">Cabin pressurization</span> Process to maintain internal air pressure in aircraft or spacecraft

Cabin pressurization is a process in which conditioned air is pumped into the cabin of an aircraft or spacecraft in order to create a safe and comfortable environment for humans flying at high altitudes. For aircraft, this air is usually bled off from the gas turbine engines at the compressor stage, and for spacecraft, it is carried in high-pressure, often cryogenic, tanks. The air is cooled, humidified, and mixed with recirculated air by one or more environmental control systems before it is distributed to the cabin.

<span class="mw-page-title-main">Pressure suit</span> Type of protective suit worn in low pressure environments

A pressure suit is a protective suit worn by high-altitude pilots who may fly at altitudes where the air pressure is too low for an unprotected person to survive, even when breathing pure oxygen at positive pressure. Such suits may be either full-pressure or partial-pressure. Partial-pressure suits work by providing mechanical counter-pressure to assist breathing at altitude.

<span class="mw-page-title-main">Hypobaric chamber</span> Chamber for simulating high altitude

A hypobaric chamber, or altitude chamber, is a chamber used during aerospace or high terrestrial altitude research or training to simulate the effects of high altitude on the human body, especially hypoxia and hypobaria. Some chambers also control for temperature and relative humidity.

Aerospace physiology is the study of the effects of high altitudes on the body, such as different pressures and levels of oxygen. At different altitudes the body may react in different ways, provoking more cardiac output, and producing more erythrocytes. These changes cause more energy waste in the body, causing muscle fatigue, but this varies depending on the level of the altitude.

Time of useful consciousness (TUC), also effective performance time (EPT), is defined as the amount of time an individual is able to function effectively in an environment of inadequate oxygen supply. It is the period of time from the interruption of the oxygen supply or exposure to an oxygen-poor environment to the time when useful function is lost, and the individual is no longer capable of taking proper corrective and protective action. It is not the time to total unconsciousness. At the higher altitudes, the TUC becomes very short; considering this danger, the emphasis is on prevention rather than cure.

Ebullism is the formation of water vapour bubbles in bodily fluids due to reduced environmental pressure, usually at extreme high altitude. It occurs because a system of liquid and gas at equilibrium will see a net conversion of liquid to gas as pressure lowers; for example, liquids reach their boiling points at lower temperatures when the pressure on them is lowered. The injuries and disorder caused by ebullism is also known as ebullism syndrome. Ebullism will expand the volume of the tissues, but the vapour pressure of water at temperatures in which a human can survive is not sufficient to rupture skin or most other tissues encased in skin. Ebullism produces predictable injuries, which may be survivable if treated soon enough, and is often accompanied by complications caused by rapid decompression, such as decompression sickness and a variety of barotrauma injuries. Persons at risk are astronauts and high altitude aviators, for whom it is an occupational hazard.

<span class="mw-page-title-main">Effects of high altitude on humans</span> Environmental effects on physiology and mental health

The effects of high altitude on humans are mostly the consequences of reduced partial pressure of oxygen in the atmosphere. The medical problems that are direct consequence of high altitude are caused by the low inspired partial pressure of oxygen, which is caused by the reduced atmospheric pressure, and the constant gas fraction of oxygen in atmospheric air over the range in which humans can survive. The other major effect of altitude is due to lower ambient temperature.

Hypobaric decompression is the reduction in ambient pressure below the normal range of sea level atmospheric pressure. Altitude decompression is hypobaric decompression which is the natural consequence of unprotected elevation to altitude, while other forms of hypobaric decompression are due to intentional or unintentional release of pressurization of a pressure suit or pressurized compartment, vehicle or habitat, and may be controlled or uncontrolled, or the reduction of pressure in a hypobaric chamber.

<span class="mw-page-title-main">Haldane's decompression model</span> Decompression model developed by John Scott Haldane

Haldane's decompression model is a mathematical model for decompression to sea level atmospheric pressure of divers breathing compressed air at ambient pressure that was proposed in 1908 by the Scottish physiologist, John Scott Haldane, who was also famous for intrepid self-experimentation.

<span class="mw-page-title-main">Physiology of decompression</span> The physiological basis for decompression theory and practice

The physiology of decompression is the aspect of physiology which is affected by exposure to large changes in ambient pressure. It involves a complex interaction of gas solubility, partial pressures and concentration gradients, diffusion, bulk transport and bubble mechanics in living tissues. Gas is breathed at ambient pressure, and some of this gas dissolves into the blood and other fluids. Inert gas continues to be taken up until the gas dissolved in the tissues is in a state of equilibrium with the gas in the lungs, or the ambient pressure is reduced until the inert gases dissolved in the tissues are at a higher concentration than the equilibrium state, and start diffusing out again.

Human physiology of underwater diving is the physiological influences of the underwater environment on the human diver, and adaptations to operating underwater, both during breath-hold dives and while breathing at ambient pressure from a suitable breathing gas supply. It, therefore, includes the range of physiological effects generally limited to human ambient pressure divers either freediving or using underwater breathing apparatus. Several factors influence the diver, including immersion, exposure to the water, the limitations of breath-hold endurance, variations in ambient pressure, the effects of breathing gases at raised ambient pressure, effects caused by the use of breathing apparatus, and sensory impairment. All of these may affect diver performance and safety.

<span class="mw-page-title-main">Mars suit</span> Space suit for the Martian surface

A Mars suit or Mars space suit is a space suit for EVAs on the planet Mars. Compared to a suit designed for space-walking in the near vacuum of low Earth orbit, Mars suits have a greater focus on actual walking and a need for abrasion resistance. Mars' surface gravity is 37.8% of Earth's, approximately 2.3 times that of the Moon, so weight is a significant concern, but there are fewer thermal demands compared to open space. At the surface the suits would contend with the atmosphere of Mars, which has a pressure of about 0.6 to 1 kilopascal. On the surface, radiation exposure is a concern, especially solar flare events, which can dramatically increase the amount of radiation over a short time.

<span class="mw-page-title-main">High altitude breathing apparatus</span> Equipment which allows the user to breathe at hypoxic altitudes

High altitude breathing apparatus is a breathing apparatus which allows a person to breathe more effectively at an altitude where the partial pressure of oxygen in the ambient atmospheric air is insufficient for the task or to sustain consciousness or human life over the long or short term.

References

  1. 1 2 Geoffrey A. Landis. "Human Exposure to Vacuum". Archived from the original on 2009-07-21. Retrieved 2016-02-05.
  2. "NASAexplores Glossary". Archived from the original on 2007-09-27.
  3. "NAHF – Harry Armstrong". November 18, 2007. Archived from the original on 2007-11-18.
  4. West, John B. (1999). "Barometric pressures on Mt. Everest: New data and physiological significance". Journal of Applied Physiology. 86 (3): 1062–1066. doi:10.1152/jappl.1999.86.3.1062. PMID   10066724. S2CID   27875962.
  5. "The Dead Sea Region as a Health Resort". Dead Sea, ISRAEL: Cystic Fibrosis Center LTD. Archived from the original on 15 July 2012. Retrieved 15 May 2012.
  6. Basilevsky, Alexandr T.; Head, James W. (2003). "The surface of Venus". Rep. Prog. Phys. 66 (10): 1699–1734. Bibcode:2003RPPh...66.1699B. doi:10.1088/0034-4885/66/10/R04. S2CID   250815558.
  7. "Ask an Astrophysicist: Human Body in a Vacuum". Archived from the original on 2014-10-14.
  8. Code of Federal Regulations (Docket 18334, 54 FR 34304 § 91.211 Supplemental oxygen, Title 14, Chapter I, Subchapter F, Part 91—General Operating and Flight Rules Subpart C—Equipment, Instrument, and Certificate Requirements). August 18, 1989. Retrieved February 6, 2016.
  9. "Skydiver's Information Manual". United States Parachute Association. March 30, 2014. Archived from the original on 2014-03-30.
  10. "Altitude Record". Sydney Morning Herald. 1 October 1936. Retrieved 29 September 2020.
  11. "A Brief History of the Pressure Suit". Dryden Research Center. March 25, 2016. Archived from the original on 2016-03-25.
  12. Sweetman, Bill (July 18–25, 2011). "Stealthy Danger: Hypoxia incidents troubling Hornets may be related to F-22 crashes". Aviation Week & Space Technology. p. 35.
  13. "NASA". 2022-12-07. Retrieved 2024-11-17.
  14. "Aviation Psychology: Development and Application | Psychology Paper Example". PsychologyWriting. Retrieved 2024-11-17.