Avro 730

Last updated

Avro 730
Avro 730.jpg
Artist's concept
Role Reconnaissance aircraft, strategic bomber
Manufacturer Avro Aircraft
Retired1957 (cancellation)
StatusProposed design

The Avro 730 was a planned Mach 3 reconnaissance aircraft and strategic bomber that was being developed by Avro Aircraft for the Royal Air Force (RAF). It had been originally envisioned as a very high-speed aircraft to perform aerial reconnaissance missions, conforming with the requirements of Air Ministry Specification OR.330. Avro subsequently decided to modify the design of the proposed 730 in order to accommodate its arming with nuclear weapons; this change therefore meant that the type would be able to perform the nuclear weapons delivery mission as well, which had been called for under Air Ministry Specification RB.156T which sought a high speed reconnaissance-bomber aircraft.

Contents

If the Avro 730 had proceeded into service, it would have replaced the V bombers as the primary airborne platform as a part of Britain's nuclear deterrent. [1] In early 1957, the Avro 730 was abruptly cancelled, along with the development of a number of other crewed aircraft, as a consequence of the 1957 Defence White Paper. Part of the reason for the cancellation was the perception that by the time it would enter service, Soviet anti-aircraft capabilities would have improved to the point where it would not be able to succeed in its mission; a preference for missile development over crewed aircraft was another factor. A successor high-speed bomber flying at low level to evade radar would be developed to meet Air Ministry Specification GOR.339, designated as the BAC TSR-2; however, this too would be eventually cancelled.

Development

Origins

Following the end of the Second World War and facing the threats of the newly emerging Cold War, the Royal Air Force (RAF) was keen to not only preserve but to strengthen its strategic capabilities. [2] In particular, RAF Bomber Command sought to replace its inventory of wartime bombers with more capable models that would take advantage of the latest technologies, such as jet propulsion and nuclear weapons. During the late 1940s and early 1950s, an entirely new jet-powered bomber fleet comprising three aircraft, the Vickers Valiant, the Avro Vulcan, and Handley Page Victor, which were collectively known as the V-bombers, was developed and introduced to service with the RAF. The V-bombers were purpose-built to be armed with the first generation of Britain's nuclear weapons, designated as Blue Danube, and served as the airborne carriers of Britain's nuclear deterrence for many years. [2]

Even as the V-bombers were being introduced, the RAF had identified a need for a very-long range supersonic strategic reconnaissance aircraft for the purpose of supporting the V bombers during their offensive mission. [3] As such, the Air Staff set about formulating an Operational Requirement; in 1954, Specification OR.330, which specified the required performance attributes for such an aircraft, was issued accordingly. [4] The envisioned reconnaissance aircraft would be capable of successfully entering the airspace of the Soviet Union while avoiding the sophisticated hostile air defences intended to combat such an intrusion. [5] In order to achieve this feat, the aircraft would have to be capable of maintaining Mach 2.5 at an altitude of 60,000 ft (18,300 m), along with the ability to attain at least Mach 3 and operate at a maximum range of 5,754 mi (9,260 km). By operating at such a high altitude and speed, along with assorted advanced electronic systems on board, it was believed that the specified aircraft would be capable of evading the threats posed by Soviet interceptor aircraft and newly developed surface-to-air missiles alike. [4]

Upon its issuing, Specification OR.330 effectively called for the most ambitious high-performance aircraft in the world. [5] At the time, Britain lacked any operational combat aircraft capable of supersonic flight; as such, meeting the specification required industry to embrace leading edge aerodynamic theory, new materials and futuristic propulsion systems. [4] In response, there were a total of three submissions from British aircraft manufacturers: the Handley Page HP.100, Vickers SP4, and the Avro Type 730. [4] [5] All were futuristic delta or needle shapes employing multiple engines, 12 on the HP.100, 16 mounted horizontally at the rear of the Vickers. Work on the HP.100 proceeded to a full-scale mockup and large-scale wind tunnel testing. [4] However, in mid-1955, Avro were issued with a contract by the Ministry of Supply to develop their submission aircraft. [5]

Development work and repurposing

The Avro 730 was an unswept canard design, making extensive use of stainless steel and powered by four Armstrong Siddeley P.176 turbojet engines. [6] As an aid to development, the Bristol Type 188 aircraft was built to test the compound-delta wing shape, and later, the effects of prolonged supersonic flight on metal. [7] Up to 10 prototypes of the aircraft were proposed, necessitated in part by a decision made part-way through the development process to give the aircraft a bombing capability. [8] [9]

The initial version of the aircraft had been intended strictly for the aerial reconnaissance role, for which it would have employed its "Red Drover" sideways-looking radar to find targets for attack by the V bomber force that would follow. As development had progressed, it became clear that the radar would not necessitate as bulky an antenna as initially believed, which had the result of freeing up considerable internal space. [9] In response, the RAF began to concentrate on a secondary bombing role for the type, for which it was to carry both the radar and a long bomb bay, in which either a weapon or additional fuel could be contained. A high-speed bomber requirement was also being studied at the time, OR.336, so the two projects were combined in the new RB.156 requirement in October 1955. [9] This led to the Avro 730 undergoing a fairly substantial redesign to correspond with the new requirements being issued. [8] Avro had anticipated this eventuality in their original submission. [9]

The envisioned test program was to have been quite thorough, which would have involved subjected full-scale aircraft to the severe temperatures anticipated at Mach 2.5 flight in a purpose-built heat chamber; upon reaching the flight testing phase, the prototypes had been scheduled to perform a total of 1,400 flight hours. [10] The first prototype, which had received the internal designation Avro 731, a three-eighths scale aircraft for testing purposes, was scheduled to fly in 1959. [11] [9] A pair of Avro 731 prototypes were set to be built and flown in advance of the full-scale prototypes. [12]

The first prototype was under construction when the air minister, Duncan Sandys, announced the decision to cancel its development in 1957. [13] It was suspected that by the time the aircraft came into service a decade later it would have been vulnerable to Soviet advances in anti-aircraft missile technology. [14] Effort was instead transferred to the Blue Streak medium-range ballistic missile, while the sole 730 test fuselage was cut up. [12] The Bristol 188 project continued despite the cancellation of the 730. Aspects and influences of the Avro 730 encouraged studies at the Royal Aircraft Establishment, Farnborough, into supersonic transport aircraft, which in turn eventually contributed to the development effort behind Concorde. [15] [16]

Design

The Avro 730 was a very high speed aircraft that was originally designed solely for aerial reconnaissance purposes. In order to achieve the desired high speed performance, the aircraft consisted of a long, slender fuselage with a high fineness ratio and a small, tapered, almost rectangular wing that was mounted centrally on the fuselage. [17] The wing's relative shortness and straightness enabled the lengthy aerial for the primary reconnaissance sensor, the Red Drover X-band radar, to be contained within the fuselage, as the wing provided little obstruction and therefore little interference with the radar. [17] A total of four Armstrong-Siddeley P.156 engines, mounted two apiece in an over-under arrangement of pods positioned at the extreme tips of the wings, provided propulsion. The engine nacelles included variable-geometry air intakes, while the engines themselves were equipped with convergent-divergent nozzles. [17] Alternative arrangements of two or three shock cones could have been installed on the nacelles. [18]

The aircraft adopted a canard configuration; this approach had the effect of greatly reducing trim-drag, while also generating increased lift at slower speeds. [17] [19] Longitudinal control was provided by the nose-mounted tail plane via trailing edge elevators, lateral control was enacted by ailerons located on the wing's trailing edge, and directional control was achieved by a conventional rudder. All four primary flight control surfaces were actuated by a quadruple-redundant electro-hydraulic control unit, designed by Boulton Paul. [17] Fly-by-wire electrical controls and automatic control systems were also to be employed on the type. The undercarriage, designed by Dowty Group, used an arrangement of a single centre-fuselage main unit with four wheels, a nose unit with two wheels, and a pair of outriggers located on the engine nacelles. [17]

The Avro 730 lacked a conventional canopy in order to maintain the fineness ratio, the cockpit featured only two small windows facing to the side. On the intended initial development models, a raised canopy would have been present for direct vision; however, production aircraft would have made sole use of an electrically operated retractable periscope in order to provide an external view, including during take-off and landing. [20] As originally envisioned, a crew of three would be carried: pilot, navigator and radar operator. [8] All three were to be contained within the same compartment, which was both pressurised and refrigerated for passenger comfort; lightweight ejection seats were to be provided for all crew members. [17] Due to features such as the automatic flight controls and stabilisation systems, the pilot was intended to be capable of supervising some of the aircraft's engineering functions as well, such as the control system, cooling and fuel systems. [17]

Cooling was a critical issue for the Avro 730; at Mach 2, the external skin was anticipated to reach 190 °C, this would rise to 277 °C at Mach 2.7. [17] Much of the aircraft was to be composed of a stainless steel brazed-honeycomb structure. [4] Fuel onboard had the additional role of serving as a heat sink, and a fully duplicated freon-based refrigeration system provided by Normalair was also present. [17]

During development, the Avro 730 underwent redesign work so that it could perform as a bomber as well as a reconnaissance platform. Although the new version looked like the original, it was larger overall and featured a new wing planform. [10] In order to increase wing area, extra "winglettes" were added outside of the engine pods and the entire planform was re-shaped to be more of a classic delta wing. The wing inside the engine pods, about ⅔ of the overall span, was swept at about 45°, the smaller area outboard of the engine was more highly swept at about 60°. The forward sweep on the trailing edge was removed. The engine pods were now specified to carry four Armstrong-Siddeley P.176 engines each, for a total of eight. [8] [12] The pods were circular at the front and mounted a single large shock cone, growing progressively more "square" to the rear, where they ended flush with the rear of the wing. Much of the layout was generally the same as the earlier version, with the rectangular canards, "hidden" cockpit and large cropped-delta vertical fin at the rear.

In the new version, the crew was reduced to two. The bomb bay was narrow, but very long at 50 ft (15 m), and was intended to be armed with a nuclear-tipped stand-off missile. [9] A suitable warhead had started development as Blue Rosette. [8]

Specifications

Orthographically projected diagram of the Avro 730. Avro 730 three-view silhouette (new).png
Orthographically projected diagram of the Avro 730.

Data from Spyplane: The U-2 History Declassified [8]

General characteristics

Performance

See also

Related development

Aircraft of comparable role, configuration, and era

Related lists

Related Research Articles

<span class="mw-page-title-main">Blue Steel (missile)</span> Nuclear stand-off air-launched ballistic missile

The Avro Blue Steel was a British air-launched, rocket-propelled nuclear armed standoff missile, built to arm the V bomber force. It allowed the bomber to launch the missile against its target while still outside the range of surface-to-air missiles (SAMs). The missile proceeded to the target at speeds up to Mach 3, and would trigger within 100 m of the pre-defined target point.

<span class="mw-page-title-main">Avro Vulcan</span> British jet-powered delta wing strategic bomber

The Avro Vulcan is a jet-powered, tailless, delta-wing, high-altitude, strategic bomber, which was operated by the Royal Air Force (RAF) from 1956 until 1984. Aircraft manufacturer A.V. Roe and Company (Avro) designed the Vulcan in response to Specification B.35/46. Of the three V bombers produced, the Vulcan was considered the most technically advanced, hence the riskiest option. Several reduced-scale aircraft, designated Avro 707s, were produced to test and refine the delta-wing design principles.

<span class="mw-page-title-main">Avro</span> British aircraft manufacturer

Avro was a British aircraft manufacturer. Its designs include the Avro 504, used as a trainer in the First World War, the Avro Lancaster, one of the pre-eminent bombers of the Second World War, and the delta wing Avro Vulcan, a stalwart of the Cold War.

<span class="mw-page-title-main">North American XB-70 Valkyrie</span> Prototype supersonic strategic bomber

The North American Aviation XB-70 Valkyrie is a retired prototype version of the planned B-70 nuclear-armed, deep-penetration supersonic strategic bomber for the United States Air Force Strategic Air Command. Designed in the late 1950s by North American Aviation (NAA) to replace the aging B-52 Stratofortress and B-58 Hustler, the six-engined, delta-winged Valkyrie could cruise for thousands of miles at Mach 3+ while flying at 70,000 feet (21,000 m).

<span class="mw-page-title-main">English Electric Lightning</span> Interceptor aircraft, British, 1960s–1980s

The English Electric Lightning is a British fighter aircraft that served as an interceptor during the 1960s, the 1970s and into the late 1980s. It was capable of a top speed of above Mach 2. The Lightning was designed, developed, and manufactured by English Electric. After EE merged with other aircraft manufacturers to form the British Aircraft Corporation it was marketed as the BAC Lightning. It was operated by the Royal Air Force (RAF), the Kuwait Air Force (KAF), and the Royal Saudi Air Force (RSAF).

<span class="mw-page-title-main">BAC TSR-2</span> British reconnaissance strike aircraft prototype

The British Aircraft Corporation TSR-2 is a cancelled Cold War strike and reconnaissance aircraft developed by the British Aircraft Corporation (BAC), for the Royal Air Force (RAF) in the late 1950s and early 1960s. The TSR-2 was designed around both conventional and nuclear weapons delivery: it was to penetrate well-defended frontline areas at low altitudes and very high speeds, and then attack high-value targets in rear areas. Another intended combat role was to provide high-altitude, high-speed stand-off, side-looking radar and photographic imagery and signals intelligence, aerial reconnaissance. Only one airframe flew and test flights and weight-rise during design indicated that the aircraft would be unable to meet its original stringent design specifications. The design specifications were reduced as the result of flight testing.

<span class="mw-page-title-main">Handley Page Victor</span> British strategic bomber and tanker aircraft

The Handley Page Victor is a British jet-powered strategic bomber developed and produced by Handley Page during the Cold War. It was the third and final V bomber to be operated by the Royal Air Force (RAF), the other two being the Vickers Valiant and the Avro Vulcan. Entering service in 1958, the Victor was initially developed as part of the United Kingdom's airborne nuclear deterrent, but it was retired from the nuclear mission in 1968, following the discovery of fatigue cracks which had been exacerbated by the RAF's adoption of a low-altitude flight profile to avoid interception, and due to the pending introduction of the Royal Navy's submarine-launched Polaris missiles in 1969.

<span class="mw-page-title-main">Gloster Javelin</span> British interceptor aircraft

The Gloster Javelin is a twin-engined all-weather interceptor aircraft that served with Britain's Royal Air Force from the mid-1950s until the late 1960s. It was a T-tailed delta-wing aircraft designed for night and all-weather operations and was the last aircraft design to bear the Gloster name. Introduced in 1956 after a lengthy development period, the aircraft received several upgrades during production to its engines, radar and weapons, including support for the De Havilland Firestreak air-to-air missile.

<span class="mw-page-title-main">Bristol 188</span> British supersonic research aircraft

The Bristol Type 188 is a supersonic research aircraft designed and produced by the British aircraft manufacturer Bristol Aeroplane Company. It was nicknamed the Flaming Pencil in reference to its length and relatively slender cross-section as well as its intended purpose.

<span class="mw-page-title-main">Saunders-Roe SR.53</span> Type of aircraft

The Saunders-Roe SR.53 was a British prototype interceptor aircraft of mixed jet and rocket propulsion developed for the Royal Air Force (RAF) by Saunders-Roe in the early 1950s. As envisaged, the SR.53 would have been used as an interceptor aircraft, using its rocket propulsion to rapidly climb and approach incoming hostile bombers at high speeds; following its attack run, the aircraft would then return to its base using jet propulsion.

<span class="mw-page-title-main">North American XF-108 Rapier</span> Canceled interceptor aircraft project

The North American XF-108 Rapier was a proposed long-range, high-speed interceptor aircraft designed by North American Aviation intended to defend the United States from supersonic Soviet strategic bombers. The aircraft would have cruised at speeds around Mach 3 with an unrefueled combat radius over 1,000 nautical miles, and was equipped with radar and missiles offering engagement ranges up to 100 miles (160 km) against bomber-sized targets.

<span class="mw-page-title-main">Dassault Mirage IV</span> French supersonic strategic bomber

The Dassault Mirage IV was a French supersonic strategic bomber and deep-reconnaissance aircraft. Developed by Dassault Aviation, the aircraft entered service with the French Air Force in October 1964. For many years it was a vital part of the nuclear triad of the Force de Frappe, France's nuclear deterrent striking force. The Mirage IV was retired from the nuclear strike role in 1996, and the type was entirely retired from operational service in 2005.

<span class="mw-page-title-main">Republic XF-103</span> Cancelled American military plane project of the 1940s-1950s

The Republic XF-103 was an American project to develop a powerful missile-armed interceptor aircraft capable of destroying Soviet bombers while flying at speeds as high as Mach 3. Despite a prolonged development, it never progressed past the mockup stage.

<span class="mw-page-title-main">Fairey Delta 2</span> Type of aircraft

The Fairey Delta 2 or FD2 is a British supersonic research aircraft that was produced by the Fairey Aviation Company in response to a specification from the Ministry of Supply for a specialised aircraft for conducting investigations into flight and control at transonic and supersonic speeds. Features included a delta wing and a drooped nose. On 6 October 1954, the Delta 2 made its maiden flight, flown by Fairey test pilot Peter Twiss; two aircraft would be produced. The Delta 2 was the final aircraft to be produced by Fairey as an independent manufacturer.

The Hawker Siddeley P.1154 was a planned supersonic vertical/short take-off and landing (V/STOL) fighter aircraft designed by Hawker Siddeley Aviation (HSA).

<span class="mw-page-title-main">Operational Requirement F.155</span> British military defense specification

Operational Requirement F.155 was a specification issued by the British Ministry of Supply on 15 January 1955 for an interceptor aircraft to defend the United Kingdom from Soviet high-flying nuclear-armed supersonic bombers.

<span class="mw-page-title-main">Hawker P.1121</span> Type of aircraft

The Hawker P.1121 was a British supersonic fighter aircraft designed, but never fully completed, by Hawker Siddeley during the mid-1950s. It was designed by a team headed by Sir Sydney Camm.

<span class="mw-page-title-main">Avro 720</span> Type of aircraft

The Avro 720 was an in-development British single-seat interceptor of the 1950s. It was designed and being developed by Avro in competition with the Saunders-Roe-built SR.53. While at least one prototype was partially-constructed, the order for the Avro 720, and quickly thereafter the project entirely, was terminated prior to any aircraft having been completed.

<span class="mw-page-title-main">BAC/Dassault AFVG</span> 1960s project for combat aircraft with a variable-sweep wing

BAC/Dassault AFVG was a 1960s project for supersonic multi-role combat aircraft with a variable-sweep wing, jointly developed by British Aircraft Corporation in the United Kingdom and Dassault Aviation of France.

The thin-wing Javelin refers to a series of design studies for an improved supersonic-capable version of the Gloster Javelin aircraft. Depending on the source, it is also known as F.153D, after its Air Ministry issued Operational Requirement, or the Super Javelin in some Gloster documents.

References

Citations

  1. Brookes 1982, p. 90.
  2. 1 2 Wood 1975, p. 130.
  3. Wood 1975, pp. 136-137.
  4. 1 2 3 4 5 6 Wood 1975, p. 137.
  5. 1 2 3 4 Polmar 2001, p. 9.
  6. Wood 1975, pp. 137-138.
  7. Bud and Gummett 2002, p. 49.
  8. 1 2 3 4 5 6 Polmar 2001, p. 10.
  9. 1 2 3 4 5 6 Wood 1975, p. 139.
  10. 1 2 Wood 1975, pp. 139-140.
  11. Lewis 1980, p. 388.
  12. 1 2 3 Wood 1975, p. 140.
  13. Polmar 2001, p. 11.
  14. Bartlett 1971, p. 134.
  15. Bud and Gummett 2002, p. 50.
  16. Wood 1975, p. 141.
  17. 1 2 3 4 5 6 7 8 9 10 Wood 1975, p. 138.
  18. Wood 1975, pp. 138-139.
  19. Buttler 2003, p. 75.
  20. Wood 1975, p. 132.

Bibliography