Azorhizobium

Last updated

Azorhizobium
Scientific classification OOjs UI icon edit-ltr.svg
Domain: Bacteria
Phylum: Pseudomonadota
Class: Alphaproteobacteria
Order: Hyphomicrobiales
Family: Xanthobacteraceae
Genus: Azorhizobium
Dreyfus et al. 1988
Type species
Azorhizobium caulinodans
Species [1]

Azorhizobium is a genus of Gram-negative soil bacteria. They fix nitrogen in symbiosis with plants in the genus Sesbania . Strain ORS571 of A. caulinodans has been fully sequenced. [2]

Azorhizobiumcaulinodans ORS571 has exceptional properties because it is able to fix nitrogen in both aerobic free-living and symbiotic states [3]

Azorhizobium caulinodans ORS571 is a rice and wheat endophyte, and does not need plant metabolites to make functional nitrogenase, but low nitrogenase expression is observed when it is living in cereal roots. [3]

Related Research Articles

Nitrogen fixation is a chemical process by which molecular nitrogen (N
2
), which has a strong triple covalent bond, is converted into ammonia (NH
3
) or related nitrogenous compounds, typically in soil or aquatic systems but also in industry. The nitrogen in air is molecular dinitrogen, a relatively nonreactive molecule that is metabolically useless to all but a few microorganisms. Biological nitrogen fixation or diazotrophy is an important microbe-mediated process that converts dinitrogen (N2) gas to ammonia (NH3) using the nitrogenase protein complex (Nif).

<span class="mw-page-title-main">Green sulfur bacteria</span> Family of bacteria

The green sulfur bacteria are a phylum, Chlorobiota, of obligately anaerobic photoautotrophic bacteria that metabolize sulfur.

<span class="mw-page-title-main">Rhizobia</span> Nitrogen fixing soil bacteria

Rhizobia are diazotrophic bacteria that fix nitrogen after becoming established inside the root nodules of legumes (Fabaceae). To express genes for nitrogen fixation, rhizobia require a plant host; they cannot independently fix nitrogen. In general, they are gram negative, motile, non-sporulating rods.

<span class="mw-page-title-main">Heterocyst</span>

Heterocysts or heterocytes are specialized nitrogen-fixing cells formed during nitrogen starvation by some filamentous cyanobacteria, such as Nostoc punctiforme, Cylindrospermum stagnale, and Anabaena sphaerica. They fix nitrogen from dinitrogen (N2) in the air using the enzyme nitrogenase, in order to provide the cells in the filament with nitrogen for biosynthesis.

Diazotrophs are bacteria and archaea that fix gaseous nitrogen in the atmosphere into a more usable form such as ammonia.

<i>Ensifer meliloti</i> Species of bacterium

Ensifer meliloti are an aerobic, Gram-negative, and diazotrophic species of bacteria. S. meliloti are motile and possess a cluster of peritrichous flagella. S. meliloti fix atmospheric nitrogen into ammonia for their legume hosts, such as alfalfa. S. meliloti forms a symbiotic relationship with legumes from the genera Medicago, Melilotus and Trigonella, including the model legume Medicago truncatula. This symbiosis promotes the development of a plant organ, termed a root nodule. Because soil often contains a limited amount of nitrogen for plant use, the symbiotic relationship between S. meliloti and their legume hosts has agricultural applications. These techniques reduce the need for inorganic nitrogenous fertilizers.

<span class="mw-page-title-main">Nitrogenase</span> Class of enzymes

Nitrogenases are enzymes (EC 1.18.6.1EC 1.19.6.1) that are produced by certain bacteria, such as cyanobacteria (blue-green bacteria) and rhizobacteria. These enzymes are responsible for the reduction of nitrogen (N2) to ammonia (NH3). Nitrogenases are the only family of enzymes known to catalyze this reaction, which is a step in the process of nitrogen fixation. Nitrogen fixation is required for all forms of life, with nitrogen being essential for the biosynthesis of molecules (nucleotides, amino acids) that create plants, animals and other organisms. They are encoded by the Nif genes or homologs. They are related to protochlorophyllide reductase.

<i>Frankia</i> Genus of bacteria

Frankia is a genus of nitrogen-fixing bacteria that live in symbiosis with actinorhizal plants, similar to the Rhizobium bacteria found in the root nodules of legumes in the family Fabaceae. Frankia also initiate the forming of root nodules.

<i>Azotobacter</i> Genus of bacteria

Azotobacter is a genus of usually motile, oval or spherical bacteria that form thick-walled cysts and may produce large quantities of capsular slime. They are aerobic, free-living soil microbes that play an important role in the nitrogen cycle in nature, binding atmospheric nitrogen, which is inaccessible to plants, and releasing it in the form of ammonium ions into the soil. In addition to being a model organism for studying diazotrophs, it is used by humans for the production of biofertilizers, food additives, and some biopolymers. The first representative of the genus, Azotobacter chroococcum, was discovered and described in 1901 by Dutch microbiologist and botanist Martinus Beijerinck. Azotobacter species are Gram-negative bacteria found in neutral and alkaline soils, in water, and in association with some plants.

Azotobacter vinelandii is Gram-negative diazotroph that can fix nitrogen while grown aerobically. These bacteria are easily cultured and grown.

<i>Rhodospirillum rubrum</i> Species of bacterium

Rhodospirillum rubrum is a Gram-negative, pink-coloured bacterium, with a size of 800 to 1000 nanometers. It is a facultative anaerobe, thus capable of using oxygen for aerobic respiration under aerobic conditions, or an alternative terminal electron acceptor for anaerobic respiration under anaerobic conditions. Alternative terminal electron acceptors for R. rubrum include dimethyl sulfoxide or trimethylamine oxide.

<span class="mw-page-title-main">Rhizobacteria</span> Group of bacteria affecting plant growth

Rhizobacteria are root-associated bacteria that can have a detrimental, neutral or beneficial effect on plant growth. The name comes from the Greek rhiza, meaning root. The term usually refers to bacteria that form symbiotic relationships with many plants (mutualism). Rhizobacteria are often referred to as plant growth-promoting rhizobacteria, or PGPRs. The term PGPRs was first used by Joseph W. Kloepper in the late 1970s and has become commonly used in scientific literature.

Azorhizobium caulinodans is a species of bacteria that forms a nitrogen-fixing symbiosis with plants of the genus Sesbania. The symbiotic relationship between Sesbania rostrata and A. caulinodans lead to nitrogen fixing nodules in S. rostrata. Bacterial chemotaxis plays an important role in establishing this symbiotic relationship.

The Xanthobacteraceae are a family of bacteria that includes Azorhizobium, a genus of rhizobia. Xanthobacteraceae bacteria are diverse and Gram-negative, rod-shaped, and may be motile or non-motile depending on the specific bacteria. Their cells range in size from 0.4–1.0 × 0.8–6 µm, but when grown in the presence of alcohol as the sole carbon source, they can reach up to 10 µm in length. These bacteria do not form spores and have opaque, slimy colonies that appear slightly yellow due to the presence of zeaxanthin dirhamnoside.

<span class="mw-page-title-main">Vanadium nitrogenase</span> Enzyme necessary for the process of nitrogen fixation

Vanadium nitrogenase is a key enzyme for nitrogen fixation found in nitrogen-fixing bacteria, and is used as an alternative to molybdenum nitrogenase when molybdenum is unavailable. Vanadium nitrogenases are an important biological use of vanadium, which is uncommonly used by life. An important component of the nitrogen cycle, vanadium nitrogenase converts nitrogen gas to ammonia, thereby making otherwise inaccessible nitrogen available to plants. Unlike molybdenum nitrogenase, vanadium nitrogenase can also reduce carbon monoxide to ethylene, ethane and propane but both enzymes can reduce protons to hydrogen gas and acetylene to ethylene.

Raphidiopsis raciborskii is a freshwater cyanobacterium.

A nitrogen fixation package is a piece of research equipment for studying nitrogen fixation in plants. One product of this kind, the Q-Box NF1LP made by Qubit Systems, operates by measuring the hydrogen (H2) given off in the nitrogen-fixing chemical reaction enabled by nitrogenase enzymes.

<i>Cyanothece</i> Genus of bacteria

Cyanothece is a genus of unicellular, diazotrophic, oxygenic photosynthesizing cyanobacteria.

<i>Azotobacter chroococcum</i> Species of bacterium

Azotobacter chroococcum is a bacterium that has the ability to fix atmospheric nitrogen. It was discovered by Martinus Beijerinck in 1901, and was the first aerobic, free-living nitrogen fixer discovered. A. chroococcum could be useful for nitrogen fixation in crops as a biofertilizer, fungicide, and nutrient indicator, and in bioremediation.

Trichodesmium thiebautii is a cyanobacteria that is often found in open oceans of tropical and subtropical regions and is known to be a contributor to large oceanic surface blooms. This microbial species is a diazotroph, meaning it fixes nitrogen gas (N2), but it does so without the use of heterocysts. T. thiebautii is able to simultaneously perform oxygenic photosynthesis. T. thiebautii was discovered in 1892 by M.A. Gomont. T. thiebautii are important for nutrient cycling in marine habitats because of their ability to fix N2, a limiting nutrient in ocean ecosystems.

References

  1. "List of Prokaryotic names with Standing in Nomenclature Azorhizobium" . Retrieved 2013-11-26.
  2. Lee, K. B.; et al. (2008). "The genome of the versatile nitrogen fixer Azorhizobium caulinodans ORS571". BMC Genomics. 9 (4): 271. doi: 10.1186/1471-2164-9-271 . PMC   2443382 . PMID   18522759.
  3. 1 2 Ryu, Min-Hyung; Zhang, Jing; Toth, Tyler; Khokhani, Devanshi; Geddes, Barney A.; Mus, Florence; Garcia-Costas, Amaya; Peters, John W.; Poole, Philip S.; Ané, Jean-Michel; Voigt, Christopher A. (2020-07-06). "Control of nitrogen fixation in bacteria that associate with cereals". Nature Microbiology. 5 (2): 314–330. doi:10.1038/s41564-019-0631-2. ISSN   2058-5276. PMC   8634771 . PMID   31844298. S2CID   209380949.