Beluga whale coronavirus SW1

Last updated
Beluga whale coronavirus SW1
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Pisuviricota
Class: Pisoniviricetes
Order: Nidovirales
Family: Coronaviridae
Genus: Gammacoronavirus
Subgenus: Cegacovirus
Species:
Beluga whale coronavirus SW1

Beluga whale coronavirus SW1 (Whale-CoV SW1) is a mammalian Gammacoronavirus , an RNA virus, discovered through genome sequencing in the liver of a single deceased beluga whale and first described in 2008. This was the first description of the complete genome of a coronavirus found in a marine mammal. [1]

The captive-born whale was male and died at age 13 after a short illness. This illness was characterised by generalised pulmonary disease and terminal acute liver failure. The liver demonstrated pathological signs, including areas of necrosis. Electron microscopy showed many round viral particles measuring around 60–80nm in the liver cytoplasm, but it could not be confirmed whether these corresponded with the RNA identified. It is not known whether the beluga is the natural host of this virus or whether the virus is pathogenic in whales. Other coronaviruses can cause liver pathologies, but it could not be confirmed whether that was the case here. [1]

A genetic analysis showed the virus to be highly divergent, but closest to the Gammacoronavirus group. [1] A closely related virus was subsequently reported in bottlenose dolphins, with the authors proposing that both should be included in the same species, Cetacean coronavirus. [2]

See also

Related Research Articles

<span class="mw-page-title-main">Coronavirus</span> Subfamily of viruses in the family Coronaviridae

Coronaviruses are a group of related RNA viruses that cause diseases in mammals and birds. In humans and birds, they cause respiratory tract infections that can range from mild to lethal. Mild illnesses in humans include some cases of the common cold, while more lethal varieties can cause SARS, MERS and COVID-19. In cows and pigs they cause diarrhea, while in mice they cause hepatitis and encephalomyelitis.

<span class="mw-page-title-main">Defective interfering particle</span>

Defective interfering particles (DIPs), also known as defective interfering viruses, are spontaneously generated virus mutants in which a critical portion of the particle's genome has been lost due to defective replication or non-homologous recombination. The mechanism of their formation is presumed to be as a result of template-switching during replication of the viral genome, although non-replicative mechanisms involving direct ligation of genomic RNA fragments have also been proposed. DIPs are derived from and associated with their parent virus, and particles are classed as DIPs if they are rendered non-infectious due to at least one essential gene of the virus being lost or severely damaged as a result of the defection. A DIP can usually still penetrate host cells, but requires another fully functional virus particle to co-infect a cell with it, in order to provide the lost factors.

<i>Coronaviridae</i> Family of viruses in the order Nidovirales

Coronaviridae is a family of enveloped, positive-strand RNA viruses which infect amphibians, birds, and mammals. The group includes the subfamilies Letovirinae and Orthocoronavirinae; the members of the latter are known as coronaviruses.

Avian coronavirus is a species of virus from the genus Gammacoronavirus that infects birds; since 2018, all gammacoronaviruses which infect birds have been classified as this single species. The strain of avian coronavirus previously known as infectious bronchitis virus (IBV) is the only coronavirus that infects chickens. It causes avian infectious bronchitis, a highly infectious disease that affects the respiratory tract, gut, kidney and reproductive system. IBV affects the performance of both meat-producing and egg-producing chickens and is responsible for substantial economic loss within the poultry industry. The strain of avian coronavirus previously classified as Turkey coronavirus causes gastrointestinal disease in turkeys.

HHV Latency Associated Transcript is a length of RNA which accumulates in cells hosting long-term, or latent, Human Herpes Virus (HHV) infections. The LAT RNA is produced by genetic transcription from a certain region of the viral DNA. LAT regulates the viral genome and interferes with the normal activities of the infected host cell.

<i>Murine coronavirus</i> Species of virus

Murine coronavirus (M-CoV) is a virus in the genus Betacoronavirus that infects mice. Belonging to the subgenus Embecovirus, murine coronavirus strains are enterotropic or polytropic. Enterotropic strains include mouse hepatitis virus (MHV) strains D, Y, RI, and DVIM, whereas polytropic strains, such as JHM and A59, primarily cause hepatitis, enteritis, and encephalitis. Murine coronavirus is an important pathogen in the laboratory mouse and the laboratory rat. It is the most studied coronavirus in animals other than humans, and has been used as an animal disease model for many virological and clinical studies.

<span class="mw-page-title-main">Coronavirus packaging signal</span> Regulartory element in coronaviruses

The Coronavirus packaging signal is a conserved cis-regulatory element found in Betacoronavirus. It has an important role in regulating the packaging of the viral genome into the capsid. As part of the viral life cycle, within the infected cell, the viral genome becomes associated with viral proteins and assembles into new infective progeny viruses. This process is called packaging and is vital for viral replication.

<span class="mw-page-title-main">Borna disease virus</span> Species of virus

The Borna disease viruses 1 and 2 are members of the species Mammalian 1 orthobornavirus and cause Borna disease in mammals.

<i>Hepatitis B virus</i> Species of the genus Orthohepadnavirus

Hepatitis B virus (HBV) is a partially double-stranded DNA virus, a species of the genus Orthohepadnavirus and a member of the Hepadnaviridae family of viruses. This virus causes the disease hepatitis B.

<span class="mw-page-title-main">APOBEC3H</span> Protein-coding gene in the species Homo sapiens

DNA dC->dU-editing enzyme APOBEC-3H, also known as Apolipoprotein B mRNA-editing enzyme catalytic polypeptide-like 3H or APOBEC-related protein 10, is a protein that in humans is encoded by the APOBEC3H gene.

<i>Human coronavirus HKU1</i> Species of virus

Human coronavirus HKU1 (HCoV-HKU1) is a species of coronavirus in humans and animals. It causes an upper respiratory disease with symptoms of the common cold, but can advance to pneumonia and bronchiolitis. It was first discovered in January 2004 from one man in Hong Kong. Subsequent research revealed it has global distribution and earlier genesis.

<i>Alphacoronavirus</i> Genus of viruses

Alphacoronaviruses (Alpha-CoV) are members of the first of the four genera of coronaviruses. They are positive-sense, single-stranded RNA viruses that infect mammals, including humans. They have spherical virions with club-shaped surface projections formed by trimers of the spike protein, and a viral envelope.

<i>Deltacoronavirus</i> Genus of viruses

Deltacoronavirus (Delta-CoV) is one of the four genera of coronaviruses. It is in the subfamily Orthocoronavirinae of the family Coronaviridae. They are enveloped, positive-sense, single-stranded RNA viruses. Deltacoronaviruses infect mostly birds and some mammals.

<i>Human coronavirus 229E</i> Species of virus

Human coronavirus 229E (HCoV-229E) is a species of coronavirus which infects humans and bats. It is an enveloped, positive-sense, single-stranded RNA virus which enters its host cell by binding to the APN receptor. Along with Human coronavirus OC43, it is one of the viruses responsible for the common cold. HCoV-229E is a member of the genus Alphacoronavirus and subgenus Duvinacovirus.

Rhinolophus bat coronavirus HKU2 is a novel enveloped, single-stranded positive-sense RNA virus species in the Alphacoronavirus, or Group 1, genus with a corona-like morphology.

Scotophilus bat coronavirus 512 is an enveloped, single-stranded positive-sense RNA virus species in the Alphacoronavirus, or Group 1, genus with a corona-like morphology. It was isolated from a lesser Asiatic yellow house bat discovered in southern China.

<i>Coronavirus HKU15</i> Species of virus

Coronavirus HKU15, sometimes called Porcine coronavirus HKU15 is a virus first discovered in a surveillance study in Hong Kong, China, and first reported to be associated with porcine diarrhea in February 2014. In February 2014, PorCoV HKU15 was identified in pigs with clinical diarrhea disease in the U.S. state of Ohio. The complete genome of one US strain has been published. Since then, it has been identified in pig farms in Canada. The virus has been referred to as Porcine coronavirus HKU15, Swine deltacoronavirus and Porcine deltacoronavirus.

<span class="mw-page-title-main">Coronavirus diseases</span> List of Coronavirus diseases

Coronavirus diseases are caused by viruses in the coronavirus subfamily, a group of related RNA viruses that cause diseases in mammals and birds. In humans and birds, the group of viruses cause respiratory tract infections that can range from mild to lethal. Mild illnesses in humans include some cases of the common cold, while more lethal varieties can cause SARS, MERS and COVID-19. As of 2021, 45 species are registered as coronaviruses, whilst 11 diseases have been identified, as listed below.

Helicobacter cetorum is a Gram-negative, microaerophilic, spiral (helical) bacterium that is usually found in the stomachs of whales and dolphins. Based on 16S rRNA sequencing, its genome is very similar to that of Helicobacter pylori in that it can cause gastric disease in these animals. Originally isolated among Atlantic white-sided dolphins and Beluga whales in 2000, H. cetorum has been associated with hemorrhages throughout its entire gastrointestinal tract, but its role has not yet been discovered. Prior to the discovery of H. cetorum, there have not been any other Helicobacter species reported in dolphins.

<span class="mw-page-title-main">Cetacean microbiome</span> Group of communities of microorganisms that reside within whales

The cetacean microbiome is the group of communities of microorganisms that reside within whales.

References

  1. 1 2 3 Mihindukulasuriya, K. A.; Wu, G.; St. Leger, J.; Nordhausen, R. W.; Wang, D. (2008). "Identification of a Novel Coronavirus from a Beluga Whale by Using a Panviral Microarray". Journal of Virology. 82 (10): 5084–5088. doi: 10.1128/JVI.02722-07 . PMC   2346750 . PMID   18353961.
  2. Woo, P. C. Y.; Lau, S. K. P.; Lam, C. S. F.; Tsang, A. K. L.; Hui, S.-W.; Fan, R. Y. Y.; Martelli, P.; Yuen, K.-Y. (2014). "Discovery of a Novel Bottlenose Dolphin Coronavirus Reveals a Distinct Species of Marine Mammal Coronavirus in Gammacoronavirus". Journal of Virology. 88 (2): 1318–1331. doi: 10.1128/JVI.02351-13 . PMC   3911666 . PMID   24227844. (Retracted, see doi:10.1128/jvi.01503-22, PMID   36314825,  Retraction Watch . If this is an intentional citation to a retracted paper, please replace {{ retracted |...}} with {{ retracted |...|intentional=yes}}.)