Feline coronavirus

Last updated
Feline coronavirus
Virus classification OOjs UI icon edit-ltr.svg
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Pisuviricota
Class: Pisoniviricetes
Order: Nidovirales
Family: Coronaviridae
Genus: Alphacoronavirus
Subgenus: Tegacovirus
Species:
Virus:
Feline coronavirus
Strains [1]

Feline coronavirus (FCoV) is a positive-stranded RNA virus that infects cats worldwide. [2] It is a coronavirus of the species Alphacoronavirus 1 , which includes canine coronavirus (CCoV) and porcine transmissible gastroenteritis coronavirus (TGEV). FCoV has two different forms: feline enteric coronavirus (FECV), which infects the intestines, and feline infectious peritonitis virus (FIPV), which causes the disease feline infectious peritonitis (FIP).

Contents

Feline coronavirus is typically shed in feces by healthy cats, and transmitted by the fecal-oral route to other cats. [3] In environments with multiple cats, the transmission rate is much higher compared to single-cat environments. [2] The virus is insignificant until mutations cause it to be transformed from FECV to FIPV. [2] FIPV causes feline infectious peritonitis, for which treatment is generally symptomatic and palliative only. The drug GS-441524 shows promise as an antiviral treatment for FIP, but at the moment it still requires further research. [4] The drug GC376 is also being studied and developed.

Prevalence

Feline coronavirus is found in cat populations around the world. The only known exceptions are on the Falkland Islands and the Galapagos, where studies found no occurrences of FCoV antibodies in cats tested. [5] [6]

Virology

A test kit for the cats Kedi koronavirus testi.jpg
A test kit for the cats

Feline enteric coronavirus (FECV)

Feline enteric coronavirus is responsible for an infection of the mature gastrointestinal epithelial cells [7] (see also enterocytes, brush border, microvilli, villi). This intestinal infection has few outward signs, and is usually chronic. The virus is excreted in the feces of the healthy carrier, and can be detected by polymerase chain reaction (PCR) of feces or by PCR testing of rectal samples. [7]

Cats living in groups can infect each other with different strains of the virus during visits to a communal litter tray. Some cats are resistant to the virus and can avoid infection or even becoming carriers, while others may become FECV carriers. [7]

Feline infectious peritonitis virus (FIPV) and Feline infectious peritonitis

The virus becomes feline infectious peritonitis virus (FIPV) when random errors occur in the virus infecting an enterocyte, causing the virus to mutate from FECV to FIPV. [7]

In their pre-domestication natural state, cats are solitary animals and do not share space (hunting areas, rest areas, defecation sites, etc.). Domestic cats living in a group therefore have a much higher epidemiological risk of mutation. After this mutation, the FCoV acquires a tropism for macrophages, while losing intestinal tropism. [7]

In a large group of cats, n, the epidemiological risk of mutation (E) is higher and expressed theoretically as: E = n2n. A house hosting 2 cats therefore has risk of mutation E = 2. When 4 kittens (6 cats in total) are born into this house, the risk increases from 2 to 30 (62−6). Overcrowding increases the risk of mutation and conversion from FECV to FIPV, which constitutes a major risk factor for the development of feline infectious peritonitis (FIP) cases. FIP has been shown to develop in cats whose immunity is low; such as younger kittens, old cats, immunosuppression due to viral—FIV (feline immunodeficiency virus) and/or FeLV (feline leukemia virus) and stress, including the stress of separation and adoption. [7]

Infection of macrophages by FIPV is responsible for development of a fatal granulomatous vasculitis, or FIP (see granuloma). [7] Development of FIP depends on two factors: virus mutation and low immunity where virus mutation depends on the rate of mutation of FECV to FIPV and the immune status depends on the age, the genetic pool and the stress level. High immune status will be more effective at slowing down the virus. [7]

Molecular biology

Genetic relationships between the different feline coronaviruses (FCov) and canine coronaviruses (CCoV) genotypes. Recombination at arrows. 609465.fig.001.jpg
Genetic relationships between the different feline coronaviruses (FCov) and canine coronaviruses (CCoV) genotypes. Recombination at arrows.

Two forms of feline coronavirus are found in nature: enteric (FECV) and FIP (FIPV). There are also two different serotypes found with different antigens that produce unique antibodies. FCoV serotype I (also called type I) is the most frequent. Type I, that can be defined as 'FECV that could mutate to FIPV type I', is responsible for 80% of the infections. Typically, serotype I FCoV cultures are difficult to perform, with few resulting studies. FCoV serotype II (also called type II) is less frequent and is described as 'FECV type II that can mutate to FIPV type II.' FCoV type II is a recombinant virus type I with spike genes (S protein) replacement from FCoV by the canine coronavirus (CCoV) spikes. [9]

More recent research points to a common ancestor between FCoV and CCoV. This ancestor gradually evolved into FCoV I. An S protein from a yet-unknown virus was passed into the ancestor and gave rise to CCoV, whose S protein was again recombined into FCoV I to form FCoV II. CCoV gradually evolved into TGEV. [10]

FCoV type II

Virus fusion

Coronaviruses are covered with several types of "S proteins" (or E2) forming a crown of protein spikes on the surface of the virus. Coronaviruses take their name from the observation of this crown by electron microscopy. These spikes of Cov (group 1 and serotype II) are responsible for the infection power of the virus by binding the virus particle to a membrane receptor of the host cell—the Feline Amino peptidase N (fAPN). [11] [12] [13]

The viral receptor: aminopeptidase N (APN)

fAPN (feline), hAPN (human) and pAPN (porcine) differ in some areas of N-glycosylation. All strains of the coronavirus study group 1 (feline, porcine and human) can bind to the feline aminopeptidase N fapn but the human coronavirus can bind to the human APN (HAPN) but not to the porcine type receptor (pAPN) and the pig coronavirus can bind to the porcine APN (pAPN) but not the human type receptor (hAPN). At the cellular level the glycosylation level of enterocytes APN is important for the binding of virus to the receptor. [14] [15]

Viral spikes

The FECV spikes have a high affinity for enterocytes fAPN, while the mutant FIPV spikes have a high affinity for the macrophages fAPN. During the viral replication cycle, spikes proteins mature in the host cell Golgi complex with a high mannose glycosylation. This spike manno-glycosylation stage is vital for the acquisition of coronavirus virility. [7] [16]

Molecular model of FCoV type I

The receptor

In 2007, it was well established that serotype I did not work with the FCoV fAPN receptor. The FCoV type I receptor still is unknown. [17]

CoV receptors

The human CoV SARS binds to the angiotensin-converting enzyme ACE II. The ACE II is also called L-SIGN (liver/lymph node-specific intracellular adhesion molecules-3 grabbing non-integrin). Coronaviruses bind to macrophages via the Dendritic Cell-Specific Intercellular adhesion molecule-3-Grabbing Non-integrin (DC-SIGN) which is a trans-membrane protein encoded in humans by the CD209 gene. [18] ACE and DC-SIGN are two trans-membrane retrovirus receptors (mannose receptors) which can bind "the plant lectins C-type mannose binding domain". [19]

Aminopeptidase N has the same ability to interact with plant lectins C-type mannose-binding and also serves as a receptor for a retrovirus. Angiotensin-converting enzyme ACE, aminopeptidase A and aminopeptidase N have cascading actions in the renin-angiotensin-aldosterone system, which suggests a common phylogenetic origin between these molecules. Some advanced studies have shown a high homology between the Aminopeptidase N and the Angiotensin-converting enzyme. [20]

Interactions between the viruses and sialic acid

Sialic acid is a component of the complex sugar glycocalix, which is the mucus protecting the gastrointestinal and respiratory mucosa. It is an important facilitating fusion factor of any viruses to its host cell which has been very well studied for flu.

Extensive data also shows that processes using sialic acid are directly involved in the interaction with the receptor's lectins. [21] It has also been demonstrated that swine enteric coronavirus (group 1) fusion to the enterocyte is accomplished via binding to the APN in the presence of the sialic acid. [15] [22] [23] Feline coronavirus infections are therefore sialic acid dependent. [24] [25]

The Porcine epidemic diarrhea virus (PEDV) S protein is 45% identical to FCoV type I spike. An EM structure of it shows sialic acid binding sites. The PEDV receptor is also unknown. [26]

Effects of breast milk on kittens

Colostrum

Other molecules from colostrum and cat milk, could also bear this coverage: lactoferrin, lactoperoxidase, lysozyme, rich proline polypeptide — PRP and alpha-lactalbumine. Lactoferrin has many properties that make it a very good candidate for this anti-coronavirus activity:

  1. For FCoV group II, it binds to APN. [27]
  2. For SARS CoV, it binds to ACEs [28]
  3. It also binds to DC-SIGN of macrophages, [29]
  4. The lactoferrin anti-viral activity is sialic-acid–dependent.

The structures of the polypeptide chain and carbohydrate moieties of bovine lactoferrin (bLF) are well established. bLF consists of a 689-amino acid polypeptide chain to which complex and high-mannose-type glycans are linked. [30]

Other components

The colostrum and breast milk also contain:

  1. Many oligosaccharides (glycan) which are known for their anti-viral properties which is thought to be primarily due to their inhibition of pathogen binding to host cell ligands. [31]
  2. Many maternal immune cells.
  3. Many cytokines (interferon, etc.), whose role by oro-mucosal route seems very important. [32] [33] [34]
  4. Sialic acid: during lactation, neutralizing oligo-saccharides binding sialic acid decreases when it binds increasingly to glycoproteins. [35] (The APN is a glycoprotein.) The anti-viral effect of lactoferrin is increased by the removal of sialic acid. [36]
  5. Mannan-binding lectins. [37]

Other protective factors

Other assumptions may help to explain this resistance to FCoV infections by kittens. In the first weeks of life, APN could be immature because highly manno-glycosylated. [38] The spikes of CoV could then not be bound. Factors in breastmilk may inhibit the synthesis of fANP by enterocytes, as already described with fructose or sucrose. [39] [40] [41]

Related Research Articles

<span class="mw-page-title-main">Coronavirus</span> Subfamily of viruses in the family Coronaviridae

Coronaviruses are a group of related RNA viruses that cause diseases in mammals and birds. In humans and birds, they cause respiratory tract infections that can range from mild to lethal. Mild illnesses in humans include some cases of the common cold, while more lethal varieties can cause SARS, MERS and COVID-19, which is causing the ongoing pandemic. In cows and pigs they cause diarrhea, while in mice they cause hepatitis and encephalomyelitis.

<span class="mw-page-title-main">SARS-related coronavirus</span> Species of coronavirus causing SARS and COVID-19

Severe acute respiratory syndrome–related coronavirus is a species of virus consisting of many known strains phylogenetically related to severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1) that have been shown to possess the capability to infect humans, bats, and certain other mammals. These enveloped, positive-sense single-stranded RNA viruses enter host cells by binding to the angiotensin-converting enzyme 2 (ACE2) receptor. The SARSr-CoV species is a member of the genus Betacoronavirus and of the subgenus Sarbecovirus.

<span class="mw-page-title-main">Alanine aminopeptidase</span> Mammalian protein found in Homo sapiens

Membrane alanyl aminopeptidase also known as alanyl aminopeptidase (AAP) or aminopeptidase N (AP-N) is an enzyme that in humans is encoded by the ANPEP gene.

<span class="mw-page-title-main">Neuraminidase</span> Glycoside hydrolase enzymes that cleave the glycosidic linkages of neuraminic acids

Exo-α-sialidase is a glycoside hydrolase that cleaves the glycosidic linkages of neuraminic acids:

Avian coronavirus is a species of virus from the genus Gammacoronavirus that infects birds; since 2018, all gammacoronaviruses which infect birds have been classified as this single species. The strain of avian coronavirus previously known as infectious bronchitis virus (IBV) is the only coronavirus that infects chickens. It causes avian infectious bronchitis, a highly infectious disease that affects the respiratory tract, gut, kidney and reproductive system. IBV affects the performance of both meat-producing and egg-producing chickens and is responsible for substantial economic loss within the poultry industry. The strain of avian coronavirus previously classified as Turkey coronavirus causes gastrointestinal disease in turkeys.

<span class="mw-page-title-main">Feline infectious peritonitis</span> Highly deadly disease that affects cats

Feline infectious peritonitis (FIP) is the name given to a common and aberrant immune response in cats to infection with feline coronavirus (FCoV).

<i>Murine coronavirus</i> Species of virus

Murine coronavirus (M-CoV) is a virus in the genus Betacoronavirus that infects mice. Belonging to the subgenus Embecovirus, murine coronavirus strains are enterotropic or polytropic. Enterotropic strains include mouse hepatitis virus (MHV) strains D, Y, RI, and DVIM, whereas polytropic strains, such as JHM and A59, primarily cause hepatitis, enteritis, and encephalitis. Murine coronavirus is an important pathogen in the laboratory mouse and the laboratory rat. It is the most studied coronavirus in animals other than humans, and has been used as an animal disease model for many virological and clinical studies.

<span class="mw-page-title-main">Transmissible gastroenteritis virus</span> Species of virus

Transmissible gastroenteritis virus or Transmissible gastroenteritis coronavirus (TGEV) is a coronavirus which infects pigs. It is an enveloped, positive-sense, single-stranded RNA virus which enters its host cell by binding to the APN receptor. The virus is a member of the genus Alphacoronavirus, subgenus Tegacovirus, species Alphacoronavirus 1.

Bovine coronavirus is a coronavirus which is a member of the species Betacoronavirus 1. The infecting virus is an enveloped, positive-sense, single-stranded RNA virus which enters its host cell by binding to the N-acetyl-9-O-acetylneuraminic acid recepter. Infection causes calf enteritis and contributes to the enzootic pneumonia complex in calves. It can also cause winter dysentery in adult cattle. It can infect both domestic and wild ruminants and has a worldwide distribution. Transmission is horizontal, via oro-fecal or respiratory routes. Like other coronaviruses from genus Betacoronavirus, subgenus Embecovirus, it has a surface protein called hemagglutinin esterase (HE) in addition to the four structural proteins shared by all coronaviruses.

<i>Human coronavirus HKU1</i> Species of virus

Human coronavirus HKU1 (HCoV-HKU1) is a species of coronavirus in humans and animals. It causes an upper respiratory disease with symptoms of the common cold, but can advance to pneumonia and bronchiolitis. It was first discovered in January 2004 from one man in Hong Kong. Subsequent research revealed it has global distribution and earlier genesis.

<i>Betacoronavirus</i> Genus of viruses

Betacoronavirus is one of four genera of coronaviruses. Member viruses are enveloped, positive-strand RNA viruses that infect mammals. The natural reservoir for betacoronaviruses are bats and rodents. Rodents are the reservoir for the subgenus Embecovirus, while bats are the reservoir for the other subgenera.

<span class="mw-page-title-main">Human coronavirus OC43</span> Species of virus

Human coronavirus OC43 (HCoV-OC43) is a member of the species Betacoronavirus 1, which infects humans and cattle. The infecting coronavirus is an enveloped, positive-sense, single-stranded RNA virus that enters its host cell by binding to the N-acetyl-9-O-acetylneuraminic acid receptor. OC43 is one of seven coronaviruses known to infect humans. It is one of the viruses responsible for the common cold and may have been responsible for the 1889–1890 pandemic. It has, like other coronaviruses from genus Betacoronavirus, subgenus Embecovirus, an additional shorter spike protein called hemagglutinin-esterase (HE).

<i>Alphacoronavirus</i> Genus of viruses

Alphacoronaviruses (Alpha-CoV) are members of the first of the four genera of coronaviruses. They are positive-sense, single-stranded RNA viruses that infect mammals, including humans. They have spherical virions with club-shaped surface projections formed by trimers of the spike protein, and a viral envelope.

<i>Human coronavirus 229E</i> Species of virus

Human coronavirus 229E (HCoV-229E) is a species of coronavirus which infects humans and bats. It is an enveloped, positive-sense, single-stranded RNA virus which enters its host cell by binding to the APN receptor. Along with Human coronavirus OC43, it is one of the viruses responsible for the common cold. HCoV-229E is a member of the genus Alphacoronavirus and subgenus Duvinacovirus.

<i>Coronavirus HKU15</i> Species of virus

Coronavirus HKU15, sometimes called Porcine coronavirus HKU15 is a virus first discovered in a surveillance study in Hong Kong, China, and first reported to be associated with porcine diarrhea in February 2014. In February 2014, PorCoV HKU15 was identified in pigs with clinical diarrhea disease in the U.S. state of Ohio. The complete genome of one US strain has been published. Since then, it has been identified in pig farms in Canada. The virus has been referred to as Porcine coronavirus HKU15, Swine deltacoronavirus and Porcine deltacoronavirus.

<span class="mw-page-title-main">Coronavirus diseases</span> List of Coronavirus diseases

Coronavirus diseases are caused by viruses in the coronavirus subfamily, a group of related RNA viruses that cause diseases in mammals and birds. In humans and birds, the group of viruses cause respiratory tract infections that can range from mild to lethal. Mild illnesses in humans include some cases of the common cold, while more lethal varieties can cause SARS, MERS and COVID-19. As of 2021, 45 species are registered as coronaviruses, whilst 11 diseases have been identified, as listed below.

<span class="mw-page-title-main">History of coronavirus</span> History of the virus group

The history of coronaviruses is an account of the discovery of the diseases caused by coronaviruses and the diseases they cause. It starts with the first report of a new type of upper-respiratory tract disease among chickens in North Dakota, U.S., in 1931. The causative agent was identified as a virus in 1933. By 1936, the disease and the virus were recognised as unique from other viral disease. They became known as infectious bronchitis virus (IBV), but later officially renamed as Avian coronavirus.

<i>Alphacoronavirus 1</i> Species of virus

Alphacoronavirus 1 is a species of coronavirus that infects cats, dogs and pigs. It includes the virus strains feline coronavirus, canine coronavirus, and transmissible gastroenteritis virus. It is an enveloped, positive-strand RNA virus which is able to enter its host cell by binding to the APN receptor.

<span class="mw-page-title-main">Coronavirus membrane protein</span> Major structure in coronaviruses

The membrane (M) protein is an integral membrane protein that is the most abundant of the four major structural proteins found in coronaviruses. The M protein organizes the assembly of coronavirus virions through protein-protein interactions with other M protein molecules as well as with the other three structural proteins, the envelope (E), spike (S), and nucleocapsid (N) proteins.

<span class="mw-page-title-main">Coronavirus spike protein</span> Glycoprotein spike on a viral capsid or viral envelope

Spike (S) glycoprotein is the largest of the four major structural proteins found in coronaviruses. The spike protein assembles into trimers that form large structures, called spikes or peplomers, that project from the surface of the virion. The distinctive appearance of these spikes when visualized using negative stain transmission electron microscopy, "recalling the solar corona", gives the virus family its main name.

References

  1. "ICTV 9th Report (2011) Coronaviridae". International Committee on Taxonomy of Viruses (ICTV). Retrieved 10 January 2019.
  2. 1 2 3 Taharaguchi, Satoshi; Soma, Takehisa; Hara, Motonobu (2012). "Prevalence of Feline Coronavirus Antibodies in Japanese Domestic Cats during the Past Decade". Journal of Veterinary Medical Science. 74 (10): 1355–8. doi: 10.1292/jvms.11-0577 . PMID   22673084.
  3. Hartmann, Katrin (2005). "Feline infectious peritonitis". Veterinary Clinics of North America: Small Animal Practice. 35 (1): 39–79. doi:10.1016/j.cvsm.2004.10.011. PMC   7114919 . PMID   15627627.
  4. Pedersen, NC; Perron, M; Bannasch, M (2019). "Efficacy and safety of the nucleoside analog GS-441524 for treatment of cats with naturally occurring feline infectious peritonitis". Journal of Feline Medicine and Surgery. 21 (4): 271–281. doi:10.1177/1098612X19825701. PMC   6435921 . PMID   30755068.
  5. Addie, Diane D.; McDonald, Mike; Audhuy, Stéphane; Burr, Paul; Hollins, Jonathan; Kovacic, Rémi; Lutz, Hans; Luxton, Zoe; Mazar, Shlomit; Meli, Marina L. (2012). "Quarantine protects Falkland Islands (Malvinas) cats from feline coronavirus infection". Journal of Feline Medicine and Surgery. 14 (2): 171–176. doi: 10.1177/1098612X11429644 . PMID   22314098. S2CID   4989860.
  6. Levy, J.K.; Crawford, P.C.; Lappin, M.R.; Dubovi, E.J.; Levy, M.G.; Alleman, R.; Tucker, S.J.; Clifford, E.L. (2008). "Infectious Diseases of Dogs and Cats on Isabela Island, Galapagos". Journal of Veterinary Internal Medicine. 22 (1): 60–65. doi: 10.1111/j.1939-1676.2007.0034.x . PMC   7166416 . PMID   18289290. S2CID   23423426.
  7. 1 2 3 4 5 6 7 8 9 Rottier, Peter J. M.; Nakamura, Kazuya; Schellen, Pepijn; Volders, Haukeline; Haijema, Bert Jan (2005). "Acquisition of Macrophage Tropism during the Pathogenesis of Feline Infectious Peritonitis is Determined by Mutations in the Feline Coronavirus Spike Protein". Journal of Virology. 79 (22): 14122–30. doi:10.1128/JVI.79.22.14122-14130.2005. PMC   1280227 . PMID   16254347.
  8. Le Poder, Sophie (2011-07-31). "Feline and Canine Coronaviruses: Common Genetic and Pathobiological Features". Advances in Virology. 2011: 609465. doi: 10.1155/2011/609465 . PMC   3265309 . PMID   22312347.
  9. Herrewegh, Arnold A. P. M.; Smeenk, Ingrid; Horzinek, Marian C.; Rottier, Peter J. M.; De Groot, Raoul J. (May 1998). "Feline Coronavirus Type II Strains 79-1683 and 79-1146 Originate from a Double Recombination between Feline Coronavirus Type I and Canine Coronavirus". Journal of Virology. 72 (5): 4508–14. doi:10.1128/JVI.72.5.4508-4514.1998. PMC   109693 . PMID   9557750.
  10. Jaimes, Javier A.; Millet, Jean K.; Stout, Alison E.; André, Nicole M.; Whittaker, Gary R. (10 January 2020). "A Tale of Two Viruses: The Distinct Spike Glycoproteins of Feline Coronaviruses". Viruses. 12 (1): 83. doi: 10.3390/v12010083 . PMC   7019228 . PMID   31936749.
  11. Tresnan, Dina B.; Holmes, Kathryn V. (1998). "Feline Aminopeptidase N is a Receptor for All Group I Coronaviruses". In Enjuanes, Luis; Siddell, Stuart G.; Spaan, Willy (eds.). The Effects of Noise on Aquatic Life. Advances in Experimental Medicine and Biology. Vol. 730. pp. 69–75. doi:10.1007/978-1-4615-5331-1_9. ISBN   978-1-4419-7310-8. PMID   9782266.
  12. Tresnan, Dina B.; Levis, Robin; Holmes, Kathryn V. (December 1996). "Feline aminopeptidase N serves as a receptor for feline, canine, porcine, and human coronaviruses in serogroup I". Journal of Virology. 70 (12): 8669–74. doi:10.1128/JVI.70.12.8669-8674.1996. PMC   190961 . PMID   8970993.
  13. Holmes, K. V.; Tresnan, D. B.; Zelus, B. D. (1997). "Virus-Receptor Interactions in the Enteric Tract". In Paul, Prem S.; Francis, David H.; Benfield, David A. (eds.). Mechanisms in the Pathogenesis of Enteric Diseases. Advances in Experimental Medicine and Biology. Vol. 412. pp. 125–33. doi:10.1007/978-1-4899-1828-4_20. ISBN   978-1-4899-1830-7. PMID   9192004.
  14. Wentworth, D. E.; Holmes, K. V. (2001). "Molecular Determinants of Species Specificity in the Coronavirus Receptor Aminopeptidase N (CD13): Influence of N-Linked Glycosylation". Journal of Virology. 75 (20): 9741–52. doi:10.1128/JVI.75.20.9741-9752.2001. PMC   114546 . PMID   11559807.
  15. 1 2 Schwegmann-Wessels, Christel; Herrler, Georg (2008). "Identification of Sugar Residues Involved in the Binding of TGEV to Porcine Brush Border Membranes" . In Cavanagh, Dave (ed.). SARS- and Other Coronaviruses. Methods in Molecular Biology. Vol. 454. pp.  319–29. doi:10.1007/978-1-59745-181-9_22. ISBN   978-1-58829-867-6. PMC   7122611 . PMID   19057868.
  16. Regan, A. D.; Whittaker, G. R. (2008). "Utilization of DC-SIGN for Entry of Feline Coronaviruses into Host Cells". Journal of Virology. 82 (23): 11992–6. doi:10.1128/JVI.01094-08. PMC   2583691 . PMID   18799586.
  17. Dye, C.; Temperton, N.; Siddell, S. G. (2007). "Type I feline coronavirus spike glycoprotein fails to recognize aminopeptidase N as a functional receptor on feline cell lines". Journal of General Virology. 88 (6): 1753–60. doi:10.1099/vir.0.82666-0. PMC   2584236 . PMID   17485536.
  18. Curtis, Benson M.; Scharnowske, Sonya; Watson, Andrew J. (1992). "Sequence and expression of a membrane-associated C-type lectin that exhibits CD4-independent binding of human immunodeficiency virus envelope glycoprotein gp120". Proceedings of the National Academy of Sciences. 89 (17): 8356–60. Bibcode:1992PNAS...89.8356C. doi: 10.1073/pnas.89.17.8356 . JSTOR   2361356. PMC   49917 . PMID   1518869.
  19. Lozach, Pierre-Yves; Burleigh, Laura; Staropoli, Isabelle; Amara, Ali (2007). "The C Type Lectins DC-SIGN and L-SIGN". Glycovirology Protocols. Methods in Molecular Biology. Vol. 379. pp. 51–68. doi:10.1007/978-1-59745-393-6_4. ISBN   978-1-58829-590-3. PMC   7122727 . PMID   17502670.
  20. Armelle, Armelle; Ascher, P.; Roques, B.-P. (1993). Analyse structurale du site actif de trois métallopeptidases à zinc: Endopeptidase Neutre-24. II, Aminopeptidase N et Enzyme de Conversion de l'Angiotensine[Structural analysis of the active site of three Zinc-metallopeptidases: Neutral Endopeptidase-24.11, Aminopeptidase N and Angiotensin Converting Enzyme] (PhD Thesis) (in French). Paris: Université de Paris. p. 160. OCLC   490188569. INIST   163816.
  21. Lehmann, F.; Tiralongo, E.; Tiralongo, J. (2006). "Sialic acid-specific lectins: Occurrence, specificity and function". Cellular and Molecular Life Sciences. 63 (12): 1331–54. doi:10.1007/s00018-005-5589-y. PMC   7079783 . PMID   16596337.
  22. Schwegmann-Wessels, C.; Zimmer, G.; Laude, H.; Enjuanes, L.; Herrler, G. (2002). "Binding of Transmissible Gastroenteritis Coronavirus to Cell Surface Sialoglycoproteins". Journal of Virology. 76 (12): 6037–43. doi:10.1128/JVI.76.12.6037-6043.2002. PMC   136196 . PMID   12021336.
  23. Schwegmann-Wessels, C.; Zimmer, G.; Schröder, B.; Breves, G.; Herrler, G. (2003). "Binding of Transmissible Gastroenteritis Coronavirus to Brush Border Membrane Sialoglycoproteins". Journal of Virology. 77 (21): 11846–8. doi:10.1128/JVI.77.21.11846-11848.2003. PMC   229351 . PMID   14557669.
  24. Paltrinieri, Saverio; Gelain, Maria E.; Ceciliani, Fabrizio; Ribera, Alba M.; Battilani, Mara (2008). "Association between faecal shedding of feline coronavirus and serum α1-acid glycoprotein sialylation". Journal of Feline Medicine & Surgery. 10 (5): 514–8. doi: 10.1016/j.jfms.2008.04.004 . PMC   7129531 . PMID   18701332.
  25. Paltrinieri, S; Metzger, C; Battilani, M; Pocacqua, V; Gelain, M; Giordano, A (2007). "Serum α1-acid glycoprotein (AGP) concentration in non-symptomatic cats with feline coronavirus (FCoV) infection". Journal of Feline Medicine & Surgery. 9 (4): 271–7. doi: 10.1016/j.jfms.2007.01.002 . PMC   7129318 . PMID   17344083.
  26. Wrapp, Daniel; McLellan, Jason S.; Gallagher, Tom (13 November 2019). "The 3.1-Angstrom Cryo-electron Microscopy Structure of the Porcine Epidemic Diarrhea Virus Spike Protein in the Prefusion Conformation". Journal of Virology. 93 (23). doi:10.1128/JVI.00923-19. PMC   6854500 . PMID   31534041.
  27. Ziere GJ, Kruijt JK, Bijsterbosch MK, Berkel TJ (June 1996). "Recognition of lactoferrin and aminopeptidase M-modified lactoferrin by the liver: involvement of the remnant receptor". Zeitschrift für Gastroenterologie. 34 (3): 118–21. PMID   8767485.
  28. Centeno, José M.; Burguete, María C.; Castelló-Ruiz, María; Enrique, María; Vallés, Salvador; Salom, Juan B.; Torregrosa, Germán; Marcos, José F.; Alborch, Enrique; Manzanares, Paloma (2006). "Lactoferricin-Related Peptides with Inhibitory Effects on ACE-Dependent Vasoconstriction". Journal of Agricultural and Food Chemistry. 54 (15): 5323–9. doi:10.1021/jf060482j. PMID   16848512.
  29. Groot, F.; Geijtenbeek, T. B. H.; Sanders, R. W.; Baldwin, C. E.; Sanchez-Hernandez, M.; Floris, R.; Van Kooyk, Y.; De Jong, E. C.; Berkhout, B. (2005). "Lactoferrin Prevents Dendritic Cell-Mediated Human Immunodeficiency Virus Type 1 Transmission by Blocking the DC-SIGN--gp120 Interaction". Journal of Virology. 79 (5): 3009–15. doi:10.1128/JVI.79.5.3009-3015.2005. PMC   548463 . PMID   15709021.
  30. Pierce, Annick; Colavizza, Didier; Benaissa, Monique; Maes, Pierrette; Tartar, Andre; Montreuil, Jean; Spik, Genevieve (1991). "Molecular cloning and sequence analysis of bovine lactotransferrin". European Journal of Biochemistry. 196 (1): 177–84. doi: 10.1111/j.1432-1033.1991.tb15801.x . PMID   2001696.
  31. Newburg, David S.; Ruiz-Palacios, Guillermo M.; Morrow, Ardythe L. (2005). "Human Milk Glycans Protect Infants Against Enteric Pathogens". Annual Review of Nutrition. 25: 37–58. doi:10.1146/annurev.nutr.25.050304.092553. PMID   16011458.
  32. Dec M, Puchalski A (2008). "Use of oromucosally administered interferon-alpha in the prevention and treatment of animal diseases". Polish Journal of Veterinary Sciences. 11 (2): 175–86. PMID   18683548.
  33. Tovey, Michael G. (June 2002). "Special Oromucosal Cytokine Therapy : Mechanism(s) of Action". The Korean Journal of Hepatology. 8 (2): 125–31. PMID   12499797.
  34. Schellekens, Huub; Geelen, Gerard; Meritet, Jean-François; Maury, Chantal; Tovey, Michael G. (2001). "Oromucosal Interferon Therapy: Relationship Between Antiviral Activity and Viral Load". Journal of Interferon & Cytokine Research. 21 (8): 575–81. doi:10.1089/10799900152547830. PMID   11559435.
  35. Martín, M.-J.; Martín-Sosa, S.; García-Pardo, L.-A.; Hueso, P. (2001). "Distribution of Bovine Milk Sialoglycoconjugates During Lactation". Journal of Dairy Science. 84 (5): 995–1000. doi: 10.3168/jds.S0022-0302(01)74558-4 . PMID   11384055.
  36. Superti, Fabiana; Siciliano, Rosa; Rega, Barbara; Giansanti, Francesco; Valenti, Piera; Antonini, Giovanni (2001). "Involvement of bovine lactoferrin metal saturation, sialic acid and protein fragments in the inhibition of rotavirus infection". Biochimica et Biophysica Acta (BBA) - General Subjects. 1528 (2–3): 107–15. doi:10.1016/S0304-4165(01)00178-7. hdl: 11573/83235 . PMID   11687297.
  37. Trégoat, Virginie; Montagne, Paul; Béné, Marie-Christine; Faure, Gilbert (2002). "Changes in the mannan binding lectin (MBL) concentration in human milk during lactation". Journal of Clinical Laboratory Analysis. 16 (6): 304–7. doi:10.1002/jcla.10055. PMC   6807810 . PMID   12424804.
  38. Danielsen, E.Michael; Hansen, Gert H.; Niels-Christiansen, Lise-Lotte (1995). "Localization and biosynthesis of aminopeptidase N in pig fetal small intestine". Gastroenterology. 109 (4): 1039–50. doi:10.1016/0016-5085(95)90561-8. PMID   7557068.
  39. Danielsen, E. Michael (1992). "Folding of intestinal brush border enzymes. Evidence that high-mannose glycosylation is an essential early event". Biochemistry. 31 (8): 2266–72. doi:10.1021/bi00123a008. PMID   1347233.
  40. Danielsen, E. Michael; Hansen, Gert H.; Wetterberg, Lise-Lotte (December 1991). "Morphological and functional changes in the enterocyte induced by fructose". The Biochemical Journal. 280 (2): 483–9. doi:10.1042/bj2800483. PMC   1130574 . PMID   1684104.
  41. Danielsen, E. Michael (August 1989). "Post-translational suppression of expression of intestinal brush border enzymes by fructose". The Journal of Biological Chemistry. 264 (23): 13726–9. doi: 10.1016/S0021-9258(18)80059-X . PMID   2569463.