BatCoV RaTG13 | |
---|---|
Virus classification | |
(unranked): | Virus |
Realm: | Riboviria |
Kingdom: | Orthornavirae |
Phylum: | Pisuviricota |
Class: | Pisoniviricetes |
Order: | Nidovirales |
Family: | Coronaviridae |
Genus: | Betacoronavirus |
Subgenus: | Sarbecovirus |
Species: | |
Strain: | BatCoV RaTG13 |
Synonyms [1] | |
|
Bat coronavirus RaTG13 is a SARS-like betacoronavirus identified in the droppings of the horseshoe bat Rhinolophus affinis . [2] [3] It was discovered in 2013 in bat droppings from a mining cave near the town of Tongguan in Mojiang county in Yunnan, China. [4] In February 2020, [5] it was identified as the closest known relative of SARS-CoV-2, the virus that causes COVID-19, sharing 96.1% nucleotide identity. [6] [7] However, in 2022, scientists found three closer matches in bats found 530 km south, in Feuang, Laos, designated as BANAL-52 (96.8% identity), BANAL-103 and BANAL-236. [8] [9] [10]
In the spring of 2012, three miners cleaning bat feces in an abandoned copper mine near the town of Tongguan in Mojiang Hani Autonomous County developed fatal pneumonia. [11] Out of concerns that the miner's cases could represent a novel disease, [12] serum samples collected from the miners were sent to the Wuhan Institute of Virology and tested by Shi Zhengli and her group for Ebola virus, Nipah virus, and bat SARSr-CoV Rp3. The samples tested negative. [3] [13] [11]
To uncover a possible cause of the infection, different animals (including bats, rats, and musk shrews) were also sampled in and around the mining cave. Between 2012 and 2015, Shi Zhengli and her group isolated 293 different coronaviruses (284 alpha- and 9 beta-coronaviruses) from bat feces samples in the cave. One of the samples collected in 2013 from Rhinolophus affinis (the intermediate horseshoe bat) contained a novel sequence of ribonucleic acids later identified as "RaTG13". [3] [13]
In 2020, Shi and her group retested the serum samples from the miners for SARS-CoV-2. The samples tested negative. [3]
In 2020, the strain identified in the sample was renamed from the original Ra4991 (4991st sample collected from Rhinolophus affinis) to "RaTG13", to reflect the originating bat species (Ra from Rhinolophus affinis), geographic location (TG from Tongguan), and year collected (13 from 2013). [14] The name change has been considered innuendo by advocates of the lab leak theory for the COVID-19 pandemic. [14]
The sequence of RaTG13 was reconstructed from metagenomic sampling (a common practice in environmental virology), [15] and as such, could potentially be an in-silico chimera. [16] RaTG13 has not been confirmed to exist in nature, to have been cultured or isolated in any laboratory, [12] or to be a viable human pathogen. [16] A live virus "RaTG13" has never been detected in any laboratory sample from the WIV or elsewhere. [16]
Based on its sequence, RaTG13 is a positive-strand RNA virus with an outer membrane. Its genome is approximately 29,800 nucleotides. The genome encodes a replicase (ORF1a/1b) and four structural proteins; including a spike protein (S), membrane protein (M), envelope protein (E) and nucleocapsid protein (N); and five viral accessory proteins, including ORF3a (NS3), ORF6 (NS6), ORF7a (NS7a), ORF7b (NS7b) and ORF8 (NS8). [3] [17]
RaTG13 bears strong resemblance to the SARS-CoV-2 genome (it shares 96.1% nucleotide similarity), and its identification in animal droppings is a supporting piece of evidence for SARS-CoV-2's natural origin. [7] The main area of divergence between RaTG13 and SARS-CoV-2 is in the receptor-binding domain (RBD) of the spike protein (S), which is the portion that binds to the receptor protein on the surface of the host cell and causes infection. The divergence in this domain indicates that, unlike SARS-CoV-2, the RaTG13 virus might not use angiotensin-converting enzyme 2 (ACE2) as its entry site into the cell. [18] Further, the S protein of RaTG13 virus lacks the furin cleavage motif RRAR↓S. [18]
The binding affinity between RATG13 and hACE2 is lower than that between SARS-CoV-2 RBD and hACE2. [19]
A phylogenetic tree based on whole-genome sequences of SARS-CoV-2 and related coronaviruses is: [20] [21]
SARS‑CoV‑2 related coronavirus |
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||
SARS-CoV-1, 79% to SARS-CoV-2 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
Betacoronavirus pandemicum is a species of virus consisting of many known strains. Two strains of the virus have caused outbreaks of severe respiratory diseases in humans: severe acute respiratory syndrome coronavirus 1, the cause of the 2002–2004 outbreak of severe acute respiratory syndrome (SARS), and severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), the cause of the pandemic of COVID-19. There are hundreds of other strains of SARSr-CoV, which are only known to infect non-human mammal species: bats are a major reservoir of many strains of SARSr-CoV; several strains have been identified in Himalayan palm civets, which were likely ancestors of SARS-CoV-1.
Severe acute respiratory syndrome coronavirus 1 (SARS-CoV-1), previously known as severe acute respiratory syndrome coronavirus (SARS-CoV), is a strain of coronavirus that causes severe acute respiratory syndrome (SARS), the respiratory illness responsible for the 2002–2004 SARS outbreak. It is an enveloped, positive-sense, single-stranded RNA virus that infects the epithelial cells within the lungs. The virus enters the host cell by binding to angiotensin-converting enzyme 2. It infects humans, bats, and palm civets. The SARS-CoV-1 outbreak was largely brought under control by simple public health measures. Testing people with symptoms, isolating and quarantining suspected cases, and restricting travel all had an effect. SARS-CoV-1 was most transmissible when patients were sick, so its spread could be effectively suppressed by isolating patients with symptoms.
Novel coronavirus (nCoV) is a provisional name given to coronaviruses of medical significance before a permanent name is decided upon. Although coronaviruses are endemic in humans and infections normally mild, such as the common cold, cross-species transmission has produced some unusually virulent strains which can cause viral pneumonia and in serious cases even acute respiratory distress syndrome and death.
Betacoronavirus is one of four genera of coronaviruses. Member viruses are enveloped, positive-strand RNA viruses that infect mammals, including humans. The natural reservoir for betacoronaviruses are bats and rodents. Rodents are the reservoir for the subgenus Embecovirus, while bats are the reservoir for the other subgenera.
Bat SARS-like coronavirus WIV1, also sometimes called SARS-like coronavirus WIV1, is a strain of severe acute respiratory syndrome–related coronavirus (SARSr-CoV) isolated from Chinese rufous horseshoe bats in 2013. Like all coronaviruses, virions consist of single-stranded positive-sense RNA enclosed within an envelope.
Shi Zhengli is a Chinese virologist who researches SARS-like coronaviruses of bat origin. Shi directs the Center for Emerging Infectious Diseases at the Wuhan Institute of Virology (WIV). In 2017, Shi and her colleague Cui Jie discovered that the SARS coronavirus likely originated in a population of cave-dwelling horseshoe bats in Xiyang Yi Ethnic Township, Yunnan. She came to prominence in the popular press as "Batwoman" during the COVID-19 pandemic for her work with bat coronaviruses. Shi was included in Time's 100 Most Influential People of 2020.
Severe acute respiratory syndrome coronavirus 2 (SARS‑CoV‑2) is a strain of coronavirus that causes COVID-19, the respiratory illness responsible for the COVID-19 pandemic. The virus previously had the provisional name 2019 novel coronavirus (2019-nCoV), and has also been called human coronavirus 2019. First identified in the city of Wuhan, Hubei, China, the World Health Organization designated the outbreak a public health emergency of international concern from January 30, 2020, to May 5, 2023. SARS‑CoV‑2 is a positive-sense single-stranded RNA virus that is contagious in humans.
The Wuhan Institute of Virology, Chinese Academy of Sciences is a research institute on virology administered by the Chinese Academy of Sciences (CAS), which reports to the State Council of the People's Republic of China. The institute is one of nine independent organisations in the Wuhan Branch of the CAS. Located in Jiangxia District, Wuhan, Hubei, it was founded in 1956 and opened mainland China's first biosafety level 4 (BSL-4) laboratory in 2018. The institute has collaborated with the Galveston National Laboratory in the United States, the Centre International de Recherche en Infectiologie in France, and the National Microbiology Laboratory in Canada. The institute has been an active premier research center for the study of coronaviruses.
SHC014-CoV is a SARS-like coronavirus (SL-COV) which infects horseshoe bats. It was discovered in Kunming in Yunnan Province, China. It was discovered along with SL-CoV Rs3367, which was the first bat SARS-like coronavirus shown to directly infect a human cell line. The line of Rs3367 that infected human cells was named Bat SARS-like coronavirus WIV1.
Mòjiāng virus(MojV), officially Mojiang henipavirus, is a virus in the family Paramyxoviridae. Based on phylogenetics, Mòjiāng virus is placed in the genus Henipavirus or described as a henipa-like virus. Antibodies raised against Mòjiāng virus glycoproteins are serologically distinct from other henipaviruses (among which higher cross-reactivity is observed).
RmYN02 is a bat-derived strain of Severe acute respiratory syndrome–related coronavirus. It was discovered in bat droppings collected between May and October 2019 from sites in Mengla County, Yunnan Province, China. It is the second-closest known relative of SARS-CoV-2, the virus strain that causes COVID-19, sharing 93.3% nucleotide identity at the scale of the complete virus genome. RmYN02 contains an insertion at the S1/S2 cleavage site in the spike protein, similar to SARS-CoV-2, suggesting that such insertion events can occur naturally.
RacCS203 is a bat-derived strain of severe acute respiratory syndrome–related coronavirus collected in acuminate horseshoe bats from sites in Thailand and sequenced by Lin-Fa Wang's team. It has 91.5% sequence similarity to SARS-CoV-2 and is most related to the RmYN02 strain. Its spike protein is closely related to RmYN02's spike, both highly divergent from SARS-CoV-2's spike.
Rc-o319 is a bat-derived strain of severe acute respiratory syndrome–related coronavirus collected in little Japanese horseshoe bats from sites in Iwate, Japan. Its has 81% similarity to SARS-CoV-2 and is the earliest strain branch of the SARS-CoV-2 related coronavirus.
Bat coronavirus RpYN06 is a SARS-like betacoronavirus that infects the horseshoe bat Rhinolophus pusillus. It is a close relative of SARS-CoV-2 with a 94.48% sequence identity.
ORF8 is a gene that encodes a viral accessory protein, Betacoronavirus NS8 protein, in coronaviruses of the subgenus Sarbecovirus. It is one of the least well conserved and most variable parts of the genome. In some viruses, a deletion splits the region into two smaller open reading frames, called ORF8a and ORF8b - a feature present in many SARS-CoV viral isolates from later in the SARS epidemic, as well as in some bat coronaviruses. For this reason the full-length gene and its protein are sometimes called ORF8ab. The full-length gene, exemplified in SARS-CoV-2, encodes a protein with an immunoglobulin domain of unknown function, possibly involving interactions with the host immune system. It is similar in structure to the ORF7a protein, suggesting it may have originated through gene duplication.
ORF10 is an open reading frame (ORF) found in the genome of the SARS-CoV-2 coronavirus. It is 38 codons long. It is not conserved in all Sarbecoviruses. In studies prompted by the COVID-19 pandemic, ORF10 attracted research interest as one of two viral accessory protein genes not conserved between SARS-CoV and SARS-CoV-2 and was initially described as a protein-coding gene likely under positive selection. However, although it is sometimes included in lists of SARS-CoV-2 accessory genes, experimental and bioinformatics evidence suggests ORF10 is likely not a functional protein-coding gene.
16BO133 is a SARS-like coronavirus (SL-COV) which was found in the greater horseshoe bat in South Korea. It was published in 2019 and its genome was completely sequenced. The sequenced Korean SARSr-CoV strain belongs to the severe acute respiratory syndrome coronavirus 1, and its genome sequence similarity is 82.8%.
LYRa11 is a SARS-like coronavirus (SL-COV) which was identified in 2011 in samples of intermediate horseshoe bats in Baoshan, Yunnan, China. The genome of this virus strain is 29805nt long, and the similarity to the whole genome sequence of SARS-CoV that caused the SARS outbreak is 91%. It was published in 2014. Like SARS-CoV and SARS-CoV-2, LYRa11 virus uses ACE2 as a receptor for infecting cells.
ZC45 and ZXC21, sometimes known as the Zhoushan virus, are two bat-derived strains of severe acute respiratory syndrome–related coronavirus. They were collected from least horseshoe bats by personnel from military laboratories in the Third Military Medical University and the Research Institute for Medicine of Nanjing Command between July 2015 and February 2017 from sites in Zhoushan, Zhejiang, China, and published in 2018. These two virus strains belong to the clade of SARS-CoV-2, the virus strain that causes COVID-19, sharing 88% nucleotide identity at the scale of the complete virus genome.
SARS-CoV-2, the causative agent of COVID-19, was first introduced to humans through zoonosis, and a zoonotic spillover event is the origin of COVID-19 that is considered most plausible by the scientific community. Human coronaviruses including SARS-CoV-2 are zoonotic diseases that are often acquired through spillover infection from animals.