Bienertia sinuspersici

Last updated

Bienertia sinuspersici
Bienertia cycloptera.JPG
Bienertia sinuspersici
Scientific classification OOjs UI icon edit-ltr.svg
Kingdom: Plantae
Clade: Tracheophytes
Clade: Angiosperms
Clade: Eudicots
Order: Caryophyllales
Family: Amaranthaceae
Genus: Bienertia
Species:
B. sinuspersici
Binomial name
Bienertia sinuspersici
Akhani

Bienertia sinuspersici is a flowering plant that currently is classified in the family Amaranthaceae , although it was previously considered to belong to the family Chenopodiaceae.

Bienertia sinuspersici conducts C4 photosynthesis, but lacks the two cell types, bundle sheath and mesophyll cells, that are typical of Kranz anatomy in most C4 plants. Bienertia sinuspersici and three other former chenopods ( Suaeda aralocaspica , Bienertia cycloptera , and Bienertia kavirense) instead conduct single-celled C4 photosynthesis within individual chlorenchyma cells. Single-celled C4 photosynthesis is achieved in Bienertia sinuspersici by the subcellular partitioning of dimorphic chloroplasts into two distinct cellular compartments, the central chloroplast compartment (CCC) and the peripheral chloroplast compartment (PCC).

Bienertia sinuspersici is native to countries surrounding the Persian Gulf: Iran, Iraq, the United Arab Emirates, Saudi Arabia, Qatar, and Kuwait. Bienertia Sinuspersici is a desert plant that is well adapted to growing in hot, dry, high salt environments. [1]

Related Research Articles

<span class="mw-page-title-main">Chloroplast</span> Plant organelle that conducts photosynthesis

A chloroplast is a type of membrane-bound organelle known as a plastid that conducts photosynthesis mostly in plant and algal cells. The photosynthetic pigment chlorophyll captures the energy from sunlight, converts it, and stores it in the energy-storage molecules ATP and NADPH while freeing oxygen from water in the cells. The ATP and NADPH is then used to make organic molecules from carbon dioxide in a process known as the Calvin cycle. Chloroplasts carry out a number of other functions, including fatty acid synthesis, amino acid synthesis, and the immune response in plants. The number of chloroplasts per cell varies from one, in unicellular algae, up to 100 in plants like Arabidopsis and wheat.

<span class="mw-page-title-main">Photosynthesis</span> Biological process to convert light into chemical energy

Photosynthesis is a biological process used by many cellular organisms to convert light energy into chemical energy, which is stored in organic compounds that can later be metabolized through cellular respiration to fuel the organism's activities. The term usually refers to oxygenic photosynthesis, where oxygen is produced as a byproduct and some of the chemical energy produced is stored in carbohydrate molecules such as sugars, starch, glycogen and cellulose, which are synthesized from endergonic reaction of carbon dioxide with water. Most plants, algae and cyanobacteria perform photosynthesis; such organisms are called photoautotrophs. Photosynthesis is largely responsible for producing and maintaining the oxygen content of the Earth's atmosphere, and supplies most of the biological energy necessary for complex life on Earth.

<span class="mw-page-title-main">Amaranthaceae</span> Family of flowering plants

Amaranthaceae is a family of flowering plants commonly known as the amaranth family, in reference to its type genus Amaranthus. It includes the former goosefoot family Chenopodiaceae and contains about 165 genera and 2,040 species, making it the most species-rich lineage within its parent order, Caryophyllales.

C<sub>4</sub> carbon fixation Photosynthetic process in some plants

C4 carbon fixation or the Hatch–Slack pathway is one of three known photosynthetic processes of carbon fixation in plants. It owes the names to the 1960s discovery by Marshall Davidson Hatch and Charles Roger Slack that some plants, when supplied with 14CO2, incorporate the 14C label into four-carbon molecules first.

<span class="mw-page-title-main">Photorespiration</span> Process in plant metabolism

Photorespiration (also known as the oxidative photosynthetic carbon cycle or C2 cycle) refers to a process in plant metabolism where the enzyme RuBisCO oxygenates RuBP, wasting some of the energy produced by photosynthesis. The desired reaction is the addition of carbon dioxide to RuBP (carboxylation), a key step in the Calvin–Benson cycle, but approximately 25% of reactions by RuBisCO instead add oxygen to RuBP (oxygenation), creating a product that cannot be used within the Calvin–Benson cycle. This process lowers the efficiency of photosynthesis, potentially lowering photosynthetic output by 25% in C3 plants. Photorespiration involves a complex network of enzyme reactions that exchange metabolites between chloroplasts, leaf peroxisomes and mitochondria.

C<sub>3</sub> carbon fixation Series of interconnected biochemical reactions

C3 carbon fixation is the most common of three metabolic pathways for carbon fixation in photosynthesis, the other two being C4 and CAM. This process converts carbon dioxide and ribulose bisphosphate (RuBP, a 5-carbon sugar) into two molecules of 3-phosphoglycerate through the following reaction:

<span class="mw-page-title-main">Salsoloideae</span> Subfamily of flowering plants

The Salsoloideae are a subfamily of the Amaranthaceae, formerly in family Chenopodiaceae.

<span class="mw-page-title-main">Vascular bundle</span> Longitudinal strand of vascular tissue in the roots, stems and leaves of higher plants

A vascular bundle is a part of the transport system in vascular plants. The transport itself happens in the stem, which exists in two forms: xylem and phloem. Both these tissues are present in a vascular bundle, which in addition will include supporting and protective tissues. In addition, there is also a tissue between xylem and phloem which is the cambium.

<i>Suaeda</i> Genus of aquatic plants

Suaeda is a genus of plants also known as seepweeds and sea-blites. Most species are confined to saline or alkaline soil habitats, such as coastal salt-flats and tidal wetlands. Many species have thick, succulent leaves, a characteristic seen in various plant genera that thrive in salty habitats.

Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP<sup>+</sup>) Enzyme

Malate dehydrogenase (oxaloacetate-decarboxylating) (NADP+) (EC 1.1.1.40) or NADP-malic enzyme (NADP-ME) is an enzyme that catalyzes the chemical reaction in the presence of a bivalent metal ion:

<i>Tecticornia pergranulata</i> Species of plant

Tecticornia pergranulata is a succulent halophytic plant species in the family Chenopodiaceae, native to Australia. This plant is commonly tested in labs involving its C3 photosynthesis and its unique resistance to salinity and adversity.

<i>Halothamnus</i> Genus of flowering plants

Halothamnus is a genus in the subfamily Salsoloideae of the family Amaranthaceae. The scientific name means saltbush, from the Greek ἅλς (hals) "salt" and θαμνος (thamnos) "bush". This refers either to salty habitats or to the accumulation of salt in the plants. The genus is distributed from Southwest and Central Asia to the Arabian peninsula and East Africa.

Suaeda aralocaspica is a species of plant in the family Amaranthaceae that is restricted to the deserts of Central Asia. It is a halophyte and uses C4 carbon fixation but lacks the characteristic leaf anatomy of other C4 plants (known as kranz anatomy). Carrying out complete C4 photosynthesis within individual cells, these plants instead are known as single‐cell C4 system or SCC4 plants. This makes them distinct from typical C4 plants, which require the collaboration of two types of photosynthetic cells. SCC4 plants have features that make them potentially valuable in engineering higher photosynthetic efficiencies in agriculturally important C3 carbon fixation species such as rice. To address this, the 467 Mb genome of S. aralocaspica has been sequenced to help understanding of the evolution of SCC4 photosynthesis and contribute to the engineering of C4 photosynthesis into other economically important crops.

Stomatal conductance, usually measured in mmol m−2 s−1 by a porometer, estimates the rate of gas exchange and transpiration through the leaf stomata as determined by the degree of stomatal aperture.

<span class="mw-page-title-main">Suaedoideae</span> Subfamily of flowering plants

The Suaedoideae are a subfamily of plants in the family Amaranthaceae.

<span class="mw-page-title-main">Corispermoideae</span> Subfamily of flowering plants

The Corispermoideae are a subfamily of the Amaranthaceae, formerly in family Chenopodiaceae.

The evolution of photosynthesis refers to the origin and subsequent evolution of photosynthesis, the process by which light energy is used to assemble sugars from carbon dioxide and a hydrogen and electron source such as water. The process of photosynthesis was discovered by Jan Ingenhousz, a Dutch-born British physician and scientist, first publishing about it in 1779.

<i>Bienertia</i> Genus of plant in the family Amaranthaceae

Bienertia is a flowering plant genus that currently is classified in the family Amaranthaceae s.l.. For long time, the genus was considered to consist only of one species, Bienertia cycloptera, but in 2005 and 2012, two new species have been separated.

<i>Bienertia cycloptera</i> Species of flowering plants in the amaranth and goosefoot family

Bienertia cycloptera is a species of flowering plant that is native to the Middle East, south-eastern Europe, and central Asia. It is a succulent, smooth annual plant with long, curved, cylindrical leaves. Its flowers have both male and female reproducing parts and its fruits are small and spherical. Bienertia cycloptera grows in hot, dry climates with little rainfall and tolerates soils with high salinity levels very well. Due to its specific growing conditions, B. cycloptera is not a very common, nor widespread plant. Even over most of its range, it often grows sparsely in small patches of growth. One notable aspect of Bienertia cycloptera is its unique C4 photosynthesis mechanism. Unlike most C4 plants, in B. cycloptera the photosynthetic mechanism occurs within a single chlorenchyma cell, without Kranz anatomy.

References

  1. Akhani, H., Barroca, J., Koteeva, N., Voznesenskaya, E., Franceschi, V., Edwards, G., ... & Ziegler, H. (2005). Bienertia sinuspersici (Chenopodiaceae): a new species from southwest Asia and discovery of a third terrestrial C4 plant without Kranz anatomy. Systematic Botany, 30(2), 290-301.