Names | |
---|---|
IUPAC name 3,7,11,15,18,22,26,30-Octamethyldotriacontane | |
Identifiers | |
3D model (JSmol) | |
ChemSpider | |
PubChem CID | |
CompTox Dashboard (EPA) | |
| |
| |
Properties | |
C40H84 | |
Molar mass | 565.112 g/mol |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C [77 °F], 100 kPa). |
Biphytane (or bisphytane) is a C40 isoprenoid produced from glycerol dialkyl glycerol tetraether (GDGT) degradation. [1] As a common lipid membrane component, biphytane is widely used as a biomarker for archaea. [2] In particular, given its association with sites of active anaerobic oxidation of methane (AOM), it is considered a biomarker of methanotrophic archaea. [3] It has been found in both marine and terrestrial environments. [2] [4]
Glycerol dialkyl glycerol tetraethers (GDGT) are major membrane lipids synthesized by archaea and some bacteria. [5] In particular, isoprenoid GDGTs are characterized by isoprenoid carbon chains connected to the glycerol molecules by ether bonds. [5] Biphytane is produced by the chemical cleavage of the ether bonds within isoprenoid GDGT (GDGT-0). [1] It is composed of isoprene units bound by ether bonds with six isoprene units (or two phytanes) linked together by a head-to-head linkage. [6]
Biphytane can be found in cyclic forms containing one to three pentacyclic rings when derived from isoprenoid GDGTs with such biosynthetically cyclized isoprenoid carbon skeletons. [5] In most analyzed samples from the environment, the acyclic form with biphytane as the isoprenoid carbon chain is typically the most abundant form. [2] Hence, in this article, biphytane is used to refer to the acyclic form unless stated otherwise.
As it occurs within GDGT, biphytane has been detected in the water column, marine sediments, hydrothermally-influenced sediments, cold seep sediments dominated by anaerobic oxidation of methane activity, and limestone. [2] Though it had been primarily studied in aquatic settings, recent studies have also started investigating terrestrial environments, such as peat bogs where the source of biphytane was identified as methanogenic peat archaea. [4] Studies have reported the detection of biphytane in petroleum as well. [6]
While early studies had considered GDGTs (and hence biphytane) to be biomarkers of extremophilic archaea, both indirect and direct evidence of GDGT originating from archaea of mesophilic marine environments or lacustrine environments with non-extreme pH and salinity have been available since the late 1970s. [3] Because biphytane in particular has been widely detected in sties of active AOM activity, it is considered a biomarker of methanotrophic archaea. [3]
Analogous to sterols in eukaryotic membranes, GDGT plays a similar role in improving the rigidity of archaeal cell membranes. [7] Supporting this, it has been reported that thermophiles increase the degree of cyclization with increasing growth temperatures to further improve membrane fluidity. [8]
Typically, biphytane measurement is performed as an indirect analysis of GDGT. When chemically deriving biphytane from such ether lipids, the ether bonds are first cleaved using hydrogen iodide (HI), boron trichloride (BCl3), or boron tribromide (BBr3) that produces alkyl halides. Then, the alkyl halides are either reduced to saturated hydrocarbons using HI/NaSCH3 or LiAlH4 or converted to methylthioesthers with NaSCH3. The obtained saturated or derivatized hydrocarbons can subsequently be separated and measured using standard gas chromatography-mass spectrometry (GC-MS) procedures. [6]
Alternatively, direct analysis of GDGT can be done with liquid chromatography but, when further structural characterization is required, MS fragments characteristic of biphytane can be obtained via high-performance liquid chromatography linked to tandem mass spectrometry (HPLC-MS/MS). [3]
The diagnostic mass spectral fragment ions for biphytane are m/z 197, 259, 267, 323, 383, 393, and 463. [6] Because the cyclic biphytanes yield different mass spectral fragment ions, the modified forms of biphytane present in a sample can be differentiated. [9]
Biphytane is considered to have a relatively high stability given its detection in high abundance within both recent and ancient sediments and petroleum, suggesting its ability to persist thermal maturation. [7] Whether biphytane degrades to shorter isoprenoids over time remains unclear. [10]
Biphytane is a well-established biomarker of archaea since it is found exclusively in archaea and all major groups except for halophilic Archaea. [2] [3] When combined with other analyses, it could be used to gain further insight into the analyzed sample. For instance, the abundance ratio of the biphytane (both acyclic and cyclic) to phytane has been used to distinguish between different groups of anaerobic methanotrophic archaea (ANME) from marine sediments given its higher abundance in ANME-1 than -2. [11]
Alternatively, δ13C measurements could be combined to further confirm the origin. Because methanotrophs utilize isotopically light carbon sources, they are characterized by very negative carbon isotope values (i.e. depleted in 13C). [12] For example, by comparing δ13C values of biphytanic diacids and GDGT-derived biphytane from the same seep limestones, a study inferred that, despite the chemical similarity of the compounds, they likely were derived from different sources; while the biphytanic diacids were mostly derived from methane-oxidizing euryarchea, the biphytanes were from mixed sources. [13]
In 2006, Ventura et al. measured solvent-extractable hydrocarbons with GC-MS from metasedimentary rocks sampled from the Tisdale and Porcupine Assemblage (2,707 to 2685 Ma) near Timmins, ON, Canada. [14] From the extracted samples, the authors measured biphytane, cyclic biphytanes, and derivatives of biphytanes. [14] Because post-Archaean deposition of the compounds could be ruled out given the reduced adsorptive capacity and restricted porosity of the sediments, the authors were able to conclude that the presence of biphytane, along with other molecular fossils, suggests the existence of archaea in the Late Archean sedimentary environments and in subsurface hydrothermal settings. [14]
In an organic chemistry general sense, an ether lipid implies an ether bridge between an alkyl group and an unspecified alkyl or aryl group, not necessarily glycerol. If glycerol is involved, the compound is called a glyceryl ether, which may take the form of an alkylglycerol, an alkyl acyl glycerol, or in combination with a phosphatide group, a phospholipid.
Hopanoids are a diverse subclass of triterpenoids with the same hydrocarbon skeleton as the compound hopane. This group of pentacyclic molecules therefore refers to simple hopenes, hopanols and hopanes, but also to extensively functionalized derivatives such as bacteriohopanepolyols (BHPs) and hopanoids covalently attached to lipid A.
TEX86 is an organic paleothermometer based upon the membrane lipids of mesophilic marine Nitrososphaerota (formerly Marine Group 1 Crenarchaeota).
Cholestane is a saturated tetracyclic triterpene. This 27-carbon biomarker is produced by diagenesis of cholesterol and is one of the most abundant biomarkers in the rock record. Presence of cholestane, its derivatives and related chemical compounds in environmental samples is commonly interpreted as an indicator of animal life and/or traces of O2, as animals are known for exclusively producing cholesterol, and thus has been used to draw evolutionary relationships between ancient organisms of unknown phylogenetic origin and modern metazoan taxa. Cholesterol is made in low abundance by other organisms (e.g., rhodophytes, land plants), but because these other organisms produce a variety of sterols it cannot be used as a conclusive indicator of any one taxon. It is often found in analysis of organic compounds in petroleum.
Phytane is the isoprenoid alkane formed when phytol, a chemical substituent of chlorophyll, loses its hydroxyl group. When phytol loses one carbon atom, it yields pristane. Other sources of phytane and pristane have also been proposed than phytol.
Caldarchaeol is a membrane-spanning lipid of the glycerol dialkyl glycerol tetraether class. It is found in hyperthermophilic archaea. Membranes made up of caldarchaeol are more stable since the hydrophobic chains are linked together, allowing the microorganisms to withstand high temperatures. It is also known as dibiphytanyldiglycerol tetraether. Two glycerol units are linked together by two strains which consist of two phytanes linked together to form a linear chain of 32 carbon atoms.
Archaeol is composed of two phytanyl chains linked to the sn-2 and sn-3 positions of glycerol. As its phosphate ester, it is a common component of the membranes of archaea.
Desmosterol (Cholesta-5,24-dien-3β-ol) is a lipid present in the membrane of phytoplankton. Structurally, desmosterol has a similar backbone to cholesterol, with the exception of an additional double bond in the structure of desmosterol.
Isorenieratene /ˌaɪsoʊrəˈnɪərətiːn/ is a carotenoid light harvesting pigment produced exclusively by the genus Chlorobium. Chlorobium are the brown-colored strains of the family of green sulfur bacteria (Chlorobiaceae). Green sulfur bacteria are anaerobic photoautotrophic organisms meaning they perform photosynthesis in the absence of oxygen using hydrogen sulfide in the following reaction:
Dinosterol (4α,23,24-trimethyl-5α-cholest-22E-en-3β-ol) is a 4α-methyl sterol that is produced by several genera of dinoflagellates and is rarely found in other classes of protists. The steroidal alkane, dinosterane, is the 'molecular fossil' of dinosterol, meaning that dinosterane has the same carbon skeleton as dinosterol, but lacks dinosterol's hydroxyl group and olefin functionality. As such, dinosterane is often used as a biomarker to identify the presence of dinoflagelletes in sediments.
Taraxerol is a naturally-occurring pentacyclic triterpenoid. It exists in various higher plants, including Taraxacum officinale (Asteraceae), Alnus glutinosa (Betulaceae), Litsea dealbata (Lauraceae), Skimmia spp. (Rutaceae), Dorstenia spp. (Moraceae), Maytenus spp. (Celastraceae), and Alchornea latifolia (Euphobiaceae). Taraxerol was named "alnulin" when it was first isolated in 1923 from the bark of the grey alder by Zellner and Röglsperger. It also had the name "skimmiol" when Takeda and Yosiki isolated it from Skimmia (Rutaceae). A large number of medicinal plants are known to have this compound in their leaves, roots or seed oil.
Crocetane, or 2,6,11,15-tetramethylhexadecane, is an isoprenoid hydrocarbon compound. Unlike its isomer phytane, crocetane has a tail-to-tail linked isoprenoid skeleton. Crocetane has been detected in modern sediments and geological records as a biomarker, often associated with anaerobic methane oxidation.
Jessica E. Tierney (born 1982) is an American paleoclimatologist who has worked with geochemical proxies such as marine sediments, mud, and TEX86, to study past climate in East Africa. Her papers have been cited more than 2,500 times; her most cited work is Northern Hemisphere Controls on Tropical Southeast African Climate During the Past 60,000 Years. Tierney is currently an associate professor of geosciences and the Thomas R. Brown Distinguished Chair in Integrative Science at the University of Arizona and faculty affiliate in the University of Arizona School of Geography, Development and Environment Tierney is the first climatologist to win NSF's Alan T Waterman Award (2022) since its inception in 1975.
24-Norcholestane, a steroid derivative, is used as a biomarker to constrain the source age of sediments and petroleum through the ratio between 24-norcholestane and 27-norcholestane, especially when used with other age diagnostic biomarkers, like oleanane. While the origins of this compound are still unknown, it is thought that they are derived from diatoms due to their identification in diatom rich sediments and environments. In addition, it was found that 24-norcholestane levels increased in correlation with diatom evolution. Another possible source of 24-norcholestane is from dinoflagellates, albeit to a much lower extent.
Crenarchaeol is a glycerol biphytanes glycerol tetraether (GDGT) biological membrane lipid. Together with archaeol, crenarcheol comprises a major component of archaeal membranes. Archaeal membranes are distinct from those of bacteria and eukaryotes because they contain isoprenoid GDGTs instead of diacyl lipids, which are found in the other domains. It has been proposed that GDGT membrane lipids are an adaptation to the high temperatures present in the environments that are home to extremophile archaea
Paula Veronica Welander is a microbiologist and professor at Stanford University who is known for her research using lipid biomarkers to investigate how life evolved on Earth.
Highly branched isoprenoids (HBIs) are long-chain alkenes produced by a small number of marine diatoms. There are a variety of highly branched isoprenoid structures, but C25 Highly branched isoprenoids containing 1 to 3 double bonds are the most common in the sedimentary record. Highly branched isoprenoids have been used as environmental proxies for sea ice conditions in the Arctic and Antarctic throughout the Holocene, and more recently, are being used to reconstruct more ancient ice records.
Lycopane (C40H82; 2,6,10,14,19,23,27,31-octamethyldotriacontane), a 40 carbon alkane isoprenoid, is a widely present biomarker that is often found in anoxic settings. It has been identified in anoxically deposited lacustrine sediments (such as the Messel formation and the Condor oil shale deposit). It has been found in sulfidic and anoxic hypersaline environments (such as the Sdom Formation). It has been widely identified in modern marine sediments, including the Peru upwelling zone, the Black Sea, and the Cariaco Trench. It has been found only rarely in crude oils.
Hydroxyarchaeol is a core lipid unique to archaea, similar to archaeol, with a hydroxide functional group at the carbon-3 position of one of its ether side chains. It is found exclusively in certain taxa of methanogenic archaea, and is a common biomarker for methanogenesis and methane-oxidation. Isotopic analysis of hydroxyarchaeol can be informative about the environment and substrates for methanogenesis.
Glycerol dialkyl glycerol tetraether lipids (GDGTs) are a class of membrane lipids synthesized by archaea and some bacteria, making them useful biomarkers for these organisms in the geological record. Their presence, structure, and relative abundances in natural materials can be useful as proxies for temperature, terrestrial organic matter input, and soil pH for past periods in Earth history. Some structural forms of GDGT form the basis for the TEX86 paleothermometer. Isoprenoid GDGTs, now known to be synthesized by many archaeal classes, were first discovered in extremophilic archaea cultures. Branched GDGTs, likely synthesized by acidobacteriota, were first discovered in a natural Dutch peat sample in 2000.