Black beetle virus

Last updated
Black beetle virus
Virus classification Red Pencil Icon.png
(unranked): Virus
Realm: Riboviria
Kingdom: Orthornavirae
Phylum: Kitrinoviricota
Class: Magsaviricetes
Order: Nodamuvirales
Family: Nodaviridae
Genus: Alphanodavirus
Species:
Black beetle virus

Black beetle virus (BBV) is a virus that was initially discovered in the North Island of New Zealand in Helensville in dead New Zealand black beetles ( Heteronychus arator ) in 1975.

Contents

History and general information

Heteronychus arator African black beetle Heteronychus arator01.jpg
Heteronychus arator African black beetle

BBV is recognized as a member of a group of small split arboviruses from the same line as Nodamura virus which was discovered 20 years prior to BBV in Japan. The genomes of these viruses are unusually small compared to others such as picorna and retroviruses. Because the virus only has 2 initial RNAs, this is the simplest class of virus. There is an RNA 3 that does appear only in infected cells. [1] BBV has only been shown to infect insect cells. When transmitted to wax moth larvae, it can cause paralysis; however it cannot replicate in mammalian cells like other viruses in its family. Viruses such as Nodamura Virus and Flock house virus have been shown to infect mammals and fishes. [2] BBV comes from the family of Nodaviridae that contains nine different viruses divided into two different sub groups: Alphanodavirus and Betanodavirus. BBV falls into the Alphanodavirus group along with Nodavirus. These viruses are non-enveloped, with icosahedral geometries, and T=3 symmetry. Their diameter is typically around 30 nm with BBV's being 32.4 nm. The virus genomes are linear and segmented, bipartite, around 21.4kb in length as well. [3] Alphanodaviruses life cycles begin with penetration into the host cell. Once in the cytoplasm, RNA is transcribed within envagininations of the host cell using its own RNA dependent polymerase. To release, the virus causes lysis of the host cell from which copies of newly made virus are released. [3]

Viral classification

BBV is a (+)ssRNA virus from the family Nodaviridae and of the genus Alphanodavirus. The two other viruses within the Nodaviridae are Noramura virus and Flock House virus. Each member of the Nodaviridae is then classified as either an alpha or beta-nodavirus with BBV being an alphanodavirus. BBV, Flock House, and nodavirus are all group IV viruses with varying abilities to infect other animals in terms of species specificity.[ citation needed ]

Viral structure

The structure of BBV is similar to the other viruses in its family. BBV is made of a non-enveloped virion that has a diameter of approximately 32.4 nm. The virion is made up of 180 copies of a single viral coating protein. The virion is organized in T=3 icosahedral symmetry, meaning there are 60 triangular subunits each made up of 3 viral capsid proteins. The virion contains both RNA1 and RNA2 inside of it, but RNA3 is not included into the virion and is transcribed after infection of a host cell. RNA3 is not necessary for replication, however it is coded for with RNA1 making it always synthesized. [4]

Viral genome

The BBV insect virus genome is made of two mRNA molecules encapsidated in a single virion. The nucleotide sequence of BBV RNA1 is 3015 bases long, this along with RNA2's 1399 base pairs completes the viral genome. The genome of BBV and other viruses in its family are incredibly small, nearly half the size of picornaviruses, making it the smallest class of virus with a segmented genome. [4] The RNA1 sequence contains a 5' region of 38 nucleotides with no coding role. It also contains a coding region for protein A, which is used in RNA synthesis. A 3' proximal region encoding RNA3 (389 bases) is also overlapped within the RNA1 sequence. RNA3 is a subgenomic messenger RNA made in infected cells but not encapsidated into the original virions. The RNA3 sequence begins inside the coding region of protein A and also forms protein B from its own frames. RNA1 and RNA2 seem to be fairly independent of each other, except for their ability to bond when forming the capsid. RNA2 is also found to suppress the function of RNA3, which could be a marker to begin capsid construction. [5] [6]

Viral replication

The genome and viral messenger for (+)ssRNA noroviridae viruses is the initial virion RNA. RNA1 sequence encodes for the virus' RNA-dependand RNA polymerase which is protein A. Thee virion also contains code for RNA2 which forms a precursor protein for capsid formation. RNA3 is also formed in infected cells from RNA1 sequence, and is inhibited by RNA2 though independently coded. RNA3 encodes for proteins B! and B2. B1 is used as the end terminal for RNA replicase, but the function is to totally clear. B2 is a separate unique protein which also has an unknown use. When tested, neither B1 or B2 was necessary for replication, however the new genotypes did not match exactly with the wild type. [7]

Cell entry

Not much information is known on the infection and replication cycle of BBV. However, it is respectively assumed to follow the path of other viruses of the same family.[ citation needed ]

The virus will first enter the cell via penetration of the membrane. Once in the cell, the virus uncoats itself and releases the genomic RNA into the cytoplasm of the cell. Typically, Nodaviridae will form an invagination within the membrane of the host cell mitochondria where it will prepare to replicate. [8]

Replication and transcription

Once set in the invagination, RNA1 is transcribed, thus allowing for the RNA-dependent polymerase to be synthesized. The space occupied by the virus is then known as a cytoplasmic viral factory in which the virus uses the host cell machinery to continue replication of RNA strands that will then be turned into dsRNA. The dsRNA is then finally transcribed or replicated into either viral mRNA or more ssRNA to be replicated again. [8]

Viral assembly and release

Once RNA2 is synthesized, the virus then prepares for assembly. When the ratio of ribosomes to N proteins becomes favorable to switch to capsid formation, the virus spontaneously assembles around RNA1 and RNA2 into an icosahedral capsid leaving the previously synthesized RNA3 outside of the capsid. Once Capsid maturation occurs via autoproteolytic cleavage of capsid protein alpha, capsid protein beta and peptide gamma are formed. Peptide gamma is assumed to be released in the endosome where it disrupts the endosomal membrane allowing the new viral RNA to be released into the cytoplasm of the cell creating the new infected cell. [9]

Host interaction

Although BBV has been shown to infect multiple types of insect cells, it has only been seen in the wild to infect Heteronychus arator - the New Zealand black beetle. The virus is able to kill the host organism, and plays a key role in suppressing the population of black beetles when they verge on overpopulating. [10]

Related Research Articles

<i>Hepadnaviridae</i> Family of viruses

Hepadnaviridae is a family of viruses. Humans, apes, and birds serve as natural hosts. There are currently 18 species in this family, divided among 5 genera. Its best-known member is hepatitis B virus. Diseases associated with this family include: liver infections, such as hepatitis, hepatocellular carcinomas, and cirrhosis. It is the sole accepted family in the order Blubervirales.

<span class="mw-page-title-main">Mumps virus</span> Viral agent that causes mumps

The mumps virus (MuV) is the virus that causes mumps. MuV contains a single-stranded, negative-sense genome made of ribonucleic acid (RNA). Its genome is about 15,000 nucleotides in length and contains seven genes that encode nine proteins. The genome is encased by a capsid that is in turn surrounded by a viral envelope. MuV particles, called virions, are pleomorphic in shape and vary in size from 100 to 600 nanometers in diameter. One serotype and twelve genotypes that vary in their geographic distribution are recognized. Humans are the only natural host of the mumps virus.

<span class="mw-page-title-main">Rubella virus</span> Species of virus

Rubella virus (RuV) is the pathogenic agent of the disease rubella, transmitted only between humans via the respiratory route, and is the main cause of congenital rubella syndrome when infection occurs during the first weeks of pregnancy.

Pseudoviridae is a family of viruses, which includes three genera.

<i>Nodaviridae</i> Family of viruses

Nodaviridae is a family of nonenveloped positive-strand RNA viruses. Vertebrates and invertebrates serve as natural hosts. Diseases associated with this family include: viral encephalopathy and retinopathy in fish. There are nine species in the family, assigned to two genera.

<i>Tombusviridae</i> Family of viruses

Tombusviridae is a family of single-stranded positive sense RNA plant viruses. There are three subfamilies, 17 genera, and 95 species in this family. The name is derived from Tomato bushy stunt virus (TBSV).

<span class="mw-page-title-main">Baltimore classification</span> Virus classification system made by David Baltimore

Baltimore classification is a system used to classify viruses based on their manner of messenger RNA (mRNA) synthesis. By organizing viruses based on their manner of mRNA production, it is possible to study viruses that behave similarly as a distinct group. Seven Baltimore groups are described that take into consideration whether the viral genome is made of deoxyribonucleic acid (DNA) or ribonucleic acid (RNA), whether the genome is single- or double-stranded, and whether the sense of a single-stranded RNA genome is positive or negative.

<i>Coccolithovirus</i> Genus of viruses

Coccolithovirus is a genus of giant double-stranded DNA virus, in the family Phycodnaviridae. Algae, specifically Emiliania huxleyi, a species of coccolithophore, serve as natural hosts. There is only one described species in this genus: Emiliania huxleyi virus 86.

<i>Cowpea chlorotic mottle virus</i> Species of virus

Cowpea chlorotic mottle virus, known by the abbreviation CCMV, is a virus that specifically infects the cowpea plant, or black-eyed pea. The leaves of infected plants develop yellow spots, hence the name "chlorotic". Similar to its "brother" virus, Cowpea mosaic virus (CPMV), CCMV is produced in high yield in plants. In the natural host, viral particles can be produced at 1–2 mg per gram of infected leaf tissue. Belonging to the bromovirus genus, cowpea chlorotic mottle virus (CCMV) is a small spherical plant virus. Other members of this genus include the brome mosaic virus (BMV) and the broad bean mottle virus (BBMV).

<i>Iridoviridae</i> Family of viruses

Iridoviridae is a family of viruses with double-stranded DNA genomes. Amphibians, fish, and invertebrates such as arthropods serve as natural hosts. There are currently 22 species in this family, divided among two subfamilies and seven genera.

<i>Fijivirus</i> Genus of viruses

Fijivirus is a genus of double-stranded RNA viruses in the family Reoviridae and subfamily Spinareovirinae. Plants serve as natural hosts. Diseases associated with this genus include: galls (tumours) in infected plants and Fiji disease, with severe stunting, deformation and death. The group name derives from Fiji island the place where the first virus was isolated. There are nine species in this genus.

<span class="mw-page-title-main">Double-stranded RNA viruses</span> Type of virus according to Baltimore classification

Double-stranded RNA viruses are a polyphyletic group of viruses that have double-stranded genomes made of ribonucleic acid. The double-stranded genome is used to transcribe a positive-strand RNA by the viral RNA-dependent RNA polymerase (RdRp). The positive-strand RNA may be used as messenger RNA (mRNA) which can be translated into viral proteins by the host cell's ribosomes. The positive-strand RNA can also be replicated by the RdRp to create a new double-stranded viral genome.

Mason-Pfizer monkey virus (M-PMV), formerly Simian retrovirus (SRV), is a species of retroviruses that usually infect and cause a fatal immune deficiency in Asian macaques. The ssRNA virus appears sporadically in mammary carcinoma of captive macaques at breeding facilities which expected as the natural host, but the prevalence of this virus in feral macaques remains unknown. M-PMV was transmitted naturally by virus-containing body fluids, via biting, scratching, grooming, and fighting. Cross contaminated instruments or equipment (fomite) can also spread this virus among animals.

<i>Alphanodavirus</i> Genus of viruses

Alphanodavirus is a genus of non-enveloped positive-strand RNA viruses in the family Nodaviridae. Insects, mammals, and fishes serve as natural hosts. Diseases associated with this genus include: Nodamura virus paralysis in infected wax moth larvae. Member viruses can also provoke paralysis and death to suckling mice and suckling hamsters. There are five species in this genus.

<i>Nodamura virus</i> Species of virus

Nodamura virus (NoV) is a member of the family Nodaviridae, which was originally isolated from mosquitoes in Japan near the village of Nodamura in 1956. Other members of Nodaviridae are flock house virus (FHV) and black beetle virus (BBV). NoV has been found to multiply in several insect and tick species; however, these infected individuals seem to be asymptomatic. Nodamura virus is the only member of the genus Alphanodavirus that can infect insects, fish, and mammals.

Entebbe bat virus is an infectious disease caused by a Flavivirus that is closely related to yellow fever.

Flock House virus (FHV) is in the alphanodavirus genus of the Nodaviridae family of viruses. Flock House virus was isolated from a grass grub at the Flock House research station in Bulls, New Zealand. FHV is an extensively studied virus and is considered a model system for the study of other non-enveloped RNA viruses owing to its small size and genetic tractability, particularly to study the role of the transiently exposed hydrophobic gamma peptide and the metastability of the viral capsid. FHV can be engineered in insect cell culture allowing for the tailored production of native or mutant authentic virions or virus-like-particles. FHV is a platform for nanotechnology and nanomedicine, for example, for epitope display and vaccine development. Viral entry into host cells occurs via receptor-mediated endocytosis. Receptor binding initiates a sequence of events during which the virus exploits the host environment in order to deliver the viral cargo in to the host cytosol. Receptor binding prompts the meta-stability of the capsid–proteins, the coordinated rearrangements of which are crucial for subsequent steps in the infection pathway. In addition, the transient exposure of a covalently-independent hydrophobic γ-peptide is responsible for breaching cellular membranes and is thus essential for the viral entry of FHV into host cells.

<i>Black queen cell virus</i> Species of virus

The black queen cell virus (BQCV) is a virus that infects honey bees, specifically Apis mellifera, Apis florea, and Apis dorsata. Infection of the latter two species is more recent and can be attributed to genetic similarity and geographical closeness. It is important to learn about this virus because it is one of the most common bee viruses and bees are the most important pollinators. The agricultural industry depends on the bee's pollination to increase its economic value.

<i>Woolly monkey hepatitis B virus</i> Species of virus

The woolly monkey hepatitis B virus (WMHBV) is a viral species of the Orthohepadnavirus genus of the Hepadnaviridae family. Its natural host is the woolly monkey (Lagothrix), an inhabitant of South America categorized as a New World primate. WMHBV, like other hepatitis viruses, infects the hepatocytes, or liver cells, of its host organism. It can cause hepatitis, liver necrosis, cirrhosis, and hepatocellular carcinoma. Because nearly all species of Lagothrix are threatened or endangered, researching and developing a vaccine and/or treatment for WMHBV is important for the protection of the whole woolly monkey genus.

References

  1. Friesen, Paul. "BlackBeetleVirus:PropagationinDrosophilaLine1Cells andanInfection-ResistantSublineCarryingEndogenous BlackBeetleVirus-RelatedParticles". Journal of Virology. 35 (3): 741–747.
  2. Maramorosch, Karl (1998-04-10). Advances in Virus Research. Academic Press. ISBN   978-0080583402.
  3. 1 2 "Alphanodaviruses". Viralzone. Swiss Institute of Bioinformatics.
  4. 1 2 Friesen, Paul. "BlackBeetleVirus:PropagationinDrosophilaLine1Cells andanInfection-ResistantSublineCarryingEndogenous BlackBeetleVirus-RelatedParticles". Journal of Virology. 35 (3).
  5. Bimalendu, Dasmahapatra. "Structure of the black beetle virus genome and its functional implications". Journal of Molecular Biology. 182 (2). doi:10.1016/0022-2836(85)90337-7. PMC   7130555 .
  6. Maramorosch, Karl. Advances in Virus Research. Academic Press.
  7. Maramorosch, Karl. Advances in Viral Research. Academic Press. pp. 393–394.
  8. 1 2 "Nodaviridae". Swiss Institute of Bioinformatics.
  9. "UniProtKB - P04329 (CAPSD_BBV)". UniProt.org.
  10. Maramorosch, Karl. Advances in Virus Research (Volume 50 ed.). Academic Press.