Brain connectivity estimators

Last updated

Brain connectivity estimators [1] represent patterns of links in the brain. Connectivity can be considered at different levels of the brain's organisation: from neurons, to neural assemblies and brain structures. Brain connectivity involves different concepts such as: neuroanatomical or structural connectivity (pattern of anatomical links), functional connectivity (usually understood as statistical dependencies) and effective connectivity (referring to causal interactions). [2]

Contents

Neuroanatomical connectivity is inherently difficult to define given the fact that at the microscopic scale of neurons, new synaptic connections or elimination of existing ones are formed dynamically and are largely dependent on the function executed, but may be considered as pathways extending over regions of the brain, which are in accordance with general anatomical knowledge. Diffusion Weighted Imaging (DWI) can be used to provide such information. The distinction between functional and effective connectivity is not always sharp; sometimes causal or directed connectivity is called functional connectivity. Functional connectivity, may be defined as the temporal correlation (in terms of statistically significant dependence between distant brain regions) among the activity of different neural assemblies, whereas effective connectivity may be defined as the direct or indirect influence that one neural system exerts over another. [3] Some brain connectivity estimators evaluate connectivity from brain activity time series such as Electroencephalography (EEG), Local field potential (LFP) or spike trains, with an effect on the directed connectivity. These estimators can be applied to fMRI data, if the required image sequences are available. Among estimators of connectivity, there are linear and non-linear, bivariate and multivariate measures. Certain estimators also indicate directionality. Different methods of connectivity estimation vary in their effectiveness. [4] [5] [6] This article provides an overview of these measures, with an emphasis on the most effective methods.

Bi-variate estimators

Classical methods

Classical estimators of connectivity are correlation and coherence. The above measures provide information on the directionality of interactions in terms of delay (correlation) or coherence (phase), however the information does not imply causal interaction. Moreover, it may be ambiguous, since phase is determined modulo 2π. It is also not possible to identify by means of correlation or coherence.

Non-linear methods

The most frequently used nonlinear estimators of connectivity are mutual information, transfer entropy, generalised synchronisation, [7] the continuity measure, [8] synchronization likelihood, [9] and phase synchronization. [7] Mutual information and transfer entropy rely on the construction of histograms for probability estimates. The continuity measure, generalized synchronisations, and synchronisation likelihood are very similar methods based on phase space reconstruction. Among these measures, only transfer entropy allows for the determination of directionality. Nonlinear measures require long stationary segments of signals, are prone to systematic errors, and above all are very sensitive to noise. [7] [8] [10] The comparison of nonlinear methods with linear correlation in the presence of noise reveals the poorer performance of non-linear estimators. [8] In [7] the authors conclude that there must be good reason to think that there is non-linearity in the data to apply non-linear methods. In fact it was demonstrated by means of surrogate data test, [11] [12] and time series forecasting [13] that nonlinearity in EEG and LFP is the exception rather than the norm. On the other hand, linear methods perform quite well for non-linear signals. [14] Finally, non-linear methods are bivariate (calculated pair-wise), which has serious implication on their performance.

Bivariate versus multivariate estimators

Comparison of performance of bivariate and multivariate estimators of connectivity may be found in, [15] [16] where it was demonstrated that in case of interrelated system of channels, greater than two, bivariate methods supply misleading information, even reversal of true propagation may be found. Consider the very common situation that the activity from a given source is measured at electrodes positioned at different distances, hence different delays between the recorded signals.

When a bivariate measure is applied, propagation is always obtained when there is a delay between channels., [16] which results in a lot of spurious flows. When we have two or three sources acting simultaneously, which is a common situation, we shall get dense and disorganized structure of connections, similar to random structure (at best some "small world" structure may be identified). This kind of pattern is usually obtained in case of application of bivariate measures. In fact, effective connectivity patterns yielded by EEG or LFP measurements are far from randomness, when proper multivariate measures are applied, as we shall demonstrate below.

Multivariate methods based on Granger causality

The testable definition of causality was introduced by Granger. [17] Granger causality principle states that if some series Y(t) contains information in past terms that helps in the prediction of series X(t), then Y(t) is said to cause X(t). Granger causality principle can be expressed in terms of two-channel multivariate autoregressive model (MVAR). Granger in his later work [18] pointed out that the determination of causality is not possible when the system of considered channels is not complete. The measures based on Granger causality principle are: Granger Causality Index (GCI), Directed Transfer Function (DTF) and Partial Directed Coherence (PDC). These measures are defined in the framework of Multivariate Autoregressive Model. [19] [20]

Multivariate Autoregressive Model

The AR model assumes that X(t)a sample of data at a time tcan be expressed as a sum of p previous values of the samples from the set of k-signals weighted by model coefficients A plus a random value E(t):

 

 

 

 

(1)

The p is called the model order. For a k-channel process X(t) and E(t) are vectors of size k and the coefficients A are k×k-sized matrices. The model order may be determined by means of criteria developed in the framework of information theory and the coefficients of the model are found by means of the minimalization of the residual noise. In the procedure correlation matrix between signals is calculated. By the transformation to the frequency domain we get:

 

 

 

 

(2)

H(f) is a transfer matrix of the system, it contains information about the relationships between signals and their spectral characteristics. H(f) is non-symmetric, so it allows for finding causal dependencies. Model order may be found by means of criteria developed in the framework of information theory, [19] e.g. AIC criterion.

Granger Causality Index

Granger causality index showing the driving of channel x by channel y is defined as the logarithm of the ratio of residual variance for one channel to the residual variance of the two-channel model: [21] GCIyx = ln (e/e1) This definition can be extended to the multichannel system by considering how the inclusion of the given channel changes the residual variance ratios. To quantify directed influence from a channel xj to xi for n channel autoregressive process in time domain we consider n and n1 dimensional MVAR models. First, the model is fitted to whole n-channel system, leading to the residual variance Vi,n(t) = var(Ei,n(t)) for signal xi. Next, a n1 dimensional MVAR model is fitted for n1 channels, excluding channel j, which leads to the residual variance Vi,n1(t) = var (Ei,n1(t)). Then Granger causality is defined as:

GCI is smaller or equal 1, since the variance of n-dimensional system is lower than the residual variance of a smaller, n1 dimensional system. GCI(t) estimates causality relations in time domain. For brain signals the spectral characteristics of the signals is of interest, because for a given task the increase of propagation in certain frequency band may be accompanied by the decrease in another frequency band. [22] DTF or PDC are the estimators defined in the frequency domain.

Directed Transfer Function

Directed Transfer Function (DTF) was introduced by Kaminski and Blinowska [23] in the form:

 

 

 

 

(3)

Where Hij(f) is an element of a transfer matrix of MVAR model. DTF describes causal influence of channel j on channel i at frequency f. The above equation ( 3 ) defines a normalized version of DTF, which takes values from 0 to 1 producing a ratio between the inflow from channel j to channel i to all the inflows to channel i. The non-normalized DTF which is directly related to the coupling strength [24] is defined as:

 

 

 

 

(4)

DTF shows not only direct, but also cascade flows, namely in case of propagation 1→2→3 it shows also propagation 1→3. In order to distinguish direct from indirect flows direct Directed Transfer Function (dDTF) was introduced. [25] The dDTF is defined as a multiplication of a modified DTF by partial coherence. The modification of DTF concerned normalization of the function in such a way as to make the denominator independent of frequency. The dDTFji showing direct propagation from channel j to i is defined as:

 

 

 

 

(5)

Where Cij(f) is partial coherence. The dDTFji has a nonzero value when both functions Fij(f) and Cij(f) are non-zero, in that case there exists a direct causal relation between channels ji. Distinguishing direct from indirect transmission is essential in case of signals from implanted electrodes, for EEG signals recorded by scalp electrodes it is not really important. [15]

DTF may be used for estimation of propagation in case of point processes e.g. spike trains or for the estimation of causal relations between spike trains and Local Field Potentials. [26]

Partial Directed Coherence

The partial directed coherence (PDC) was defined by Baccala and Sameshima [27] in the following form:

 

 

 

 

(6)

In the above equation Aij(f) is an element of A(f)a Fourier transform of MVAR model coefficients A(t), where aj(f) is j-th column of A(f) and the asterisk denotes the transpose and complex conjugate operation. Although it is a function operating in the frequency domain, the dependence of A(f) on the frequency has not a direct correspondence to the power spectrum. From normalization condition it follows that PDC takes values from the interval [0,1]. PDC shows only direct flows between channels. Unlike DTF, PDC is normalized to show a ratio between the outflow from channel j to channel i to all the outflows from the source channel j, so it emphasizes rather the sinks, not the sources. The normalization of PDC affects the detected intensities of flow as was pointed out in. [28] Namely, adding further variables that are influenced by a source variable decreases PDC, although the relationship between source and target processes remains unchanged. In other words: the flow emitted in one direction will be enhanced in comparison to the flows of the same intensity emitted from a given source in several directions.

Time-varying estimators of effective connectivity

In order to account for the dynamic changes of propagation, the method of adaptive filtering or the method based on the sliding window may be applied to estimators of connectivity. Both methods require multiple repetition of the experiment to obtain statistically satisfactory results and they produce similar results. [29] The adaptive methods, e.g. Kalman filtering, are more computationally demanding, therefore methods based on sliding window may be recommended.

In the case of parametric model the number of data points kNT (knumber of channels, NTnumber of points in the data window) has to be bigger (preferably by order of magnitude) than the number of parameters, which in case of MVAR is equal to k2p (pmodel order). In order to evaluate dynamics of the process, a short data window has to be applied, which requires an increase of the number of the data points, which may be achieved by means of a repetition of the experiment. A non-stationary recording may be divided into shorter time windows, short enough to treat the data within a window as quasi-stationary. Estimation of MVAR coefficients is based on calculation of the correlation matrix between channels Rij of k signals Xi from multivariate set, [19] separately for each trial. The resulting model coefficients are based on the correlation matrix averaged over trials. The correlation matrix has the form:

 

 

 

 

(7)

The averaging concerns correlation matrices (model is fitted independently for each short data window); the data are not averaged in the process. The choice of window size is always a compromise between quality of the fit and time resolution.

The errors of the SDTF may be evaluated by means of bootstrap method. [30] This procedure corresponds to simulations of other realizations of the experiment. The variance of the function value is obtained by repeated calculation of the results for a randomly selected (with repetitions) pool of the original data trials.

Applications

The estimation of brain connectivity has found numerous and notable applications, namely when investigating brain changes associated with the treatment of psychopathology like schizophrenia [31] and depression, [32] or following structural damage like in hemorrhage [33] or tumor. [34] [35] The methods applied benefit from a parcellation approach, where regions of the brain are defined from atlases [36] or DWI data, [37] with connectivity metrics then extracted to compare changes within standardized regions.

Specifically, DTF found multiple applications, the early ones involved: localization of epileptic foci, [38] estimation of EEG propagation in different sleep stages and wakefulness, [39] determination of transmission between brain structures of an animal during a behavioral test. [40]

One may observe the shifting of sources toward the front in transition from wakefulness to the deeper sleep stages. In the deep sleep the source is over corpus callosum, presumably it is connected with feeding the cortex from the sub-cortical structures.

One of the first applications of SDTF was determination of the dynamic propagation during performance of finger movement and its imagination,. [41] [42] The results corresponded very well with the known phenomena of event related synchronization and desynchronization such as decrease of the activity in alpha and beta band and brief increase of activity in the gamma band during movement in the areas corresponding to primary motor cortex, beta rebound after movement and so-called surround effect. [43] Especially interesting was comparison of real finger movement and its imagination. In case of real movement the short burst of gamma propagation was observed from the electrode positioned over finger primary motor cortex . In case of movement imagination this propagation started later and a cross-talk between different sites overlying motor area and supplementary motor area (SMA) was found. (The dynamics of propagation may be observed in animations [44] ).

Another applications of SDTF concerned evaluation of transmission during cognitive experiments. The results of the Continuous Attention Test (CAT) [45] confirmed the engagement of prefrontal and frontal structures in the task and supported the hypothesis of an active inhibition by pre-SMA and right inferior frontal cortex. Animations of propagation during CAT test are available. [46]

The results obtained by means of SDTF in experiments involving working memory were compatible with fMRI studies on the localization of the active sites and supplied the information concerning the temporal interaction between them. [47] The animation illustrating dynamics of the interaction are available. [48]

Note that care should be taken to avoid spurious connectivity estimates when using EEG channel data. Recent articles [49] [50] highlight that previous claims [51] that DTF and PDC were insensitive to volume conduction were inaccurate. Indeed, DTF results obtained for signals recorded from the scalp are in general affected by volume conduction. Even though the effects of volume conduction might be minimal in specific recording situations, [52] appropriate preprocessing on channel data (such as source identification) should be performed before estimating DTF or PDC.

Conclusions

The existence of well defined sources of brain activity connected with particular experimental conditions are well established in fMRI experiments, by means of inverse solution methods and intracortical measurements. This kind of deterministic structure of brain activity should affect functional connectivity, so reported in some works random or barely distinguished from random connectivity structure may be considered as a surprising phenomenon. This kind of results may be explained by methodological errors: 1) unrobust methods of connectivity estimation and, even more important, 2) application of bivariate methods. When multivariate robust measures of connectivity are applied for EEG analysis a clear picture of functional connectivity emerges. [22] [23] [38] [39] [40] [41] [42] [45] [47] [53] [54] [55]

See also

Related Research Articles

Chemometrics is the science of extracting information from chemical systems by data-driven means. Chemometrics is inherently interdisciplinary, using methods frequently employed in core data-analytic disciplines such as multivariate statistics, applied mathematics, and computer science, in order to address problems in chemistry, biochemistry, medicine, biology and chemical engineering. In this way, it mirrors other interdisciplinary fields, such as psychometrics and econometrics.

<span class="mw-page-title-main">Functional neuroimaging</span>

Functional neuroimaging is the use of neuroimaging technology to measure an aspect of brain function, often with a view to understanding the relationship between activity in certain brain areas and specific mental functions. It is primarily used as a research tool in cognitive neuroscience, cognitive psychology, neuropsychology, and social neuroscience.

<span class="mw-page-title-main">Brain–computer interface</span> Direct communication pathway between an enhanced or wired brain and an external device

A brain–computer interface (BCI), sometimes called a brain–machine interface (BMI) or smartbrain, is a direct communication pathway between the brain's electrical activity and an external device, most commonly a computer or robotic limb. BCIs are often directed at researching, mapping, assisting, augmenting, or repairing human cognitive or sensory-motor functions. They are often conceptualized as a human–machine interface that skips the intermediary component of the physical movement of body parts, although they also raise the possibility of the erasure of the discreteness of brain and machine. Implementations of BCIs range from non-invasive and partially invasive to invasive, based on how close electrodes get to brain tissue.

<span class="mw-page-title-main">Granger causality</span> Statistical hypothesis test for forecasting

The Granger causality test is a statistical hypothesis test for determining whether one time series is useful in forecasting another, first proposed in 1969. Ordinarily, regressions reflect "mere" correlations, but Clive Granger argued that causality in economics could be tested for by measuring the ability to predict the future values of a time series using prior values of another time series. Since the question of "true causality" is deeply philosophical, and because of the post hoc ergo propter hoc fallacy of assuming that one thing preceding another can be used as a proof of causation, econometricians assert that the Granger test finds only "predictive causality". Using the term "causality" alone is a misnomer, as Granger-causality is better described as "precedence", or, as Granger himself later claimed in 1977, "temporally related". Rather than testing whether Xcauses Y, the Granger causality tests whether X forecastsY.

Functional integration is the study of how brain regions work together to process information and effect responses. Though functional integration frequently relies on anatomic knowledge of the connections between brain areas, the emphasis is on how large clusters of neurons – numbering in the thousands or millions – fire together under various stimuli. The large datasets required for such a whole-scale picture of brain function have motivated the development of several novel and general methods for the statistical analysis of interdependence, such as dynamic causal modelling and statistical linear parametric mapping. These datasets are typically gathered in human subjects by non-invasive methods such as EEG/MEG, fMRI, or PET. The results can be of clinical value by helping to identify the regions responsible for psychiatric disorders, as well as to assess how different activities or lifestyles affect the functioning of the brain.

<span class="mw-page-title-main">Structural equation modeling</span> Form of causal modeling that fit networks of constructs to data

Structural equation modeling (SEM) is a diverse set of methods used by scientists doing both observational and experimental research. SEM is used mostly in the social and behavioral sciences but it is also used in epidemiology, business, and other fields. A definition of SEM is difficult without reference to technical language, but a good starting place is the name itself.

<span class="mw-page-title-main">Neural oscillation</span> Brainwaves, repetitive patterns of neural activity in the central nervous system

Neural oscillations, or brainwaves, are rhythmic or repetitive patterns of neural activity in the central nervous system. Neural tissue can generate oscillatory activity in many ways, driven either by mechanisms within individual neurons or by interactions between neurons. In individual neurons, oscillations can appear either as oscillations in membrane potential or as rhythmic patterns of action potentials, which then produce oscillatory activation of post-synaptic neurons. At the level of neural ensembles, synchronized activity of large numbers of neurons can give rise to macroscopic oscillations, which can be observed in an electroencephalogram. Oscillatory activity in groups of neurons generally arises from feedback connections between the neurons that result in the synchronization of their firing patterns. The interaction between neurons can give rise to oscillations at a different frequency than the firing frequency of individual neurons. A well-known example of macroscopic neural oscillations is alpha activity.

<span class="mw-page-title-main">Functional near-infrared spectroscopy</span> Optical technique for monitoring brain activity

Functional near-infrared spectroscopy (fNIRS) is an optical brain monitoring technique which uses near-infrared spectroscopy for the purpose of functional neuroimaging. Using fNIRS, brain activity is measured by using near-infrared light to estimate cortical hemodynamic activity which occur in response to neural activity. Alongside EEG, fNIRS is one of the most common non-invasive neuroimaging techniques which can be used in portable contexts. The signal is often compared with the BOLD signal measured by fMRI and is capable of measuring changes both in oxy- and deoxyhemoglobin concentration, but can only measure from regions near the cortical surface. fNIRS may also be referred to as Optical Topography (OT) and is sometimes referred to simply as NIRS.

<span class="mw-page-title-main">Multitaper</span>

In signal processing, multitaper is a spectral density estimation technique developed by David J. Thomson. It can estimate the power spectrum SX of a stationary ergodic finite-variance random process X, given a finite contiguous realization of X as data.

<span class="mw-page-title-main">James Robins</span>

James M. Robins is an epidemiologist and biostatistician best known for advancing methods for drawing causal inferences from complex observational studies and randomized trials, particularly those in which the treatment varies with time. He is the 2013 recipient of the Nathan Mantel Award for lifetime achievement in statistics and epidemiology, and a recipient of the 2022 Rousseeuw Prize in Statistics, jointly with Miguel Hernán, Eric Tchetgen-Tchetgen, Andrea Rotnitzky and Thomas Richardson.

Integrative neuroscience is the study of neuroscience that works to unify functional organization data to better understand complex structures and behaviors. The relationship between structure and function, and how the regions and functions connect to each other. Different parts of the brain carrying out different tasks, interconnecting to come together allowing complex behavior. Integrative neuroscience works to fill gaps in knowledge that can largely be accomplished with data sharing, to create understanding of systems, currently being applied to simulation neuroscience: Computer Modeling of the brain that integrates functional groups together.

<span class="mw-page-title-main">Electroencephalography</span> Electrophysiological monitoring method to record electrical activity of the brain

Electroencephalography (EEG) is a method to record an electrogram of the spontaneous electrical activity of the brain. The biosignals detected by EEG have been shown to represent the postsynaptic potentials of pyramidal neurons in the neocortex and allocortex. It is typically non-invasive, with the EEG electrodes placed along the scalp using the International 10–20 system, or variations of it. Electrocorticography, involving surgical placement of electrodes, is sometimes called "intracranial EEG". Clinical interpretation of EEG recordings is most often performed by visual inspection of the tracing or quantitative EEG analysis.

<span class="mw-page-title-main">Resting state fMRI</span> Type of functional magnetic resonance imaging

Resting state fMRI is a method of functional magnetic resonance imaging (fMRI) that is used in brain mapping to evaluate regional interactions that occur in a resting or task-negative state, when an explicit task is not being performed. A number of resting-state brain networks have been identified, one of which is the default mode network. These brain networks are observed through changes in blood flow in the brain which creates what is referred to as a blood-oxygen-level dependent (BOLD) signal that can be measured using fMRI.

Transfer entropy is a non-parametric statistic measuring the amount of directed (time-asymmetric) transfer of information between two random processes. Transfer entropy from a process X to another process Y is the amount of uncertainty reduced in future values of Y by knowing the past values of X given past values of Y. More specifically, if and for denote two random processes and the amount of information is measured using Shannon's entropy, the transfer entropy can be written as:

Dynamic functional connectivity (DFC) refers to the observed phenomenon that functional connectivity changes over a short time. Dynamic functional connectivity is a recent expansion on traditional functional connectivity analysis which typically assumes that functional networks are static in time. DFC is related to a variety of different neurological disorders, and has been suggested to be a more accurate representation of functional brain networks. The primary tool for analyzing DFC is fMRI, but DFC has also been observed with several other mediums. DFC is a recent development within the field of functional neuroimaging whose discovery was motivated by the observation of temporal variability in the rising field of steady state connectivity research.

Michael Wolf holds the Chair of Econometrics and Applied Statistics in the Department of Economics at the University of Zurich, Switzerland. He was previously Professor at UCLA, Charles III University of Madrid, and Pompeu Fabra University.

<span class="mw-page-title-main">CONN (functional connectivity toolbox)</span>

CONN is a Matlab-based cross-platform imaging software for the computation, display, and analysis of functional connectivity in fMRI in the resting state and during task.

Corticocortical coherence is referred to the synchrony in the neural activity of different cortical brain areas. The neural activities are picked up by electrophysiological recordings from the brain. It is a method to study the brain's neural communication and function at rest or during functional tasks.

Dynamic causal modeling (DCM) is a framework for specifying models, fitting them to data and comparing their evidence using Bayesian model comparison. It uses nonlinear state-space models in continuous time, specified using stochastic or ordinary differential equations. DCM was initially developed for testing hypotheses about neural dynamics. In this setting, differential equations describe the interaction of neural populations, which directly or indirectly give rise to functional neuroimaging data e.g., functional magnetic resonance imaging (fMRI), magnetoencephalography (MEG) or electroencephalography (EEG). Parameters in these models quantify the directed influences or effective connectivity among neuronal populations, which are estimated from the data using Bayesian statistical methods.

<span class="mw-page-title-main">Dimitri Van De Ville</span> Swiss-Belgian computer scientist and neuroscientist specialized in brain activity networks

Dimitri Van De Ville is a Swiss and Belgian computer scientist and neuroscientist specialized in dynamical and network aspects of brain activity. He is a professor of bioengineering at EPFL and the head of the Medical Image Processing Laboratory at EPFL's School of Engineering.

References

  1. Sporns, Olaf (2007). "Brain connectivity". Scholarpedia. 2 (10): 4695. Bibcode:2007SchpJ...2.4695S. doi: 10.4249/scholarpedia.4695 .
  2. Sakkalis, V. (2011). "Review of Advanced Techniques for the estimation of Brain Connectivity measured with EEG/MEG". Comput Biol Med. 41 (12): 1110–1117. doi:10.1016/j.compbiomed.2011.06.020. PMID   21794851.
  3. Colombo, Matteo; Weinberger, Naftali (June 1, 2018). "Discovering Brain Mechanisms Using Network Analysis and Causal Modeling". Minds and Machines. 28 (2): 265–286. doi:10.1007/s11023-017-9447-0. PMC   6438494 . PMID   30996522 via Springer Link.
  4. Blinowska, K. J. (2011). "Review of the methods of determination of directed connectivity from multichannel data". Medical & Biological Engineering & Computing. 49 (5): 521–529. doi:10.1007/s11517-011-0739-x. PMC   3097342 . PMID   21298355.
  5. Matlab_book [Blinowska, 2011]
  6. Kaminski, M.; Liang, H. (2005). "Causal Influence: Advances in Neurosignal Analysis". Critical Reviews in Biomedical Engineering. 33 (4): 347–430. doi:10.1615/CritRevBiomedEng.v33.i4.20. PMID   15982186. S2CID   27601014.
  7. 1 2 3 4 Pereda, E.; Quiroga, R. Q.; Bhattacharya, J. (2005). "Causal Influence: Nonlinear multivariate analysis of neurophysical signals". Prog Neurobiol. 77 (1–2): 1–37. arXiv: nlin/0510077 . doi:10.1016/j.pneurobio.2005.10.003. PMID   16289760. S2CID   9529656.
  8. 1 2 3 Netoff, I.; Caroll, T. L.; Pecora, L. M.; Schiff, S. J. (2006). "Detecting coupling in the presence of noise and nonlinearity". In Schelter, J.; Winterhalder, W.; Timmer (eds.). Handbook of Time Series Analysis. Wiley-B.W.
  9. Stam, C. J.; Van Dijk, B. W. (2002). "Synchronization likelihood: an unbiased measure of generalized synchronization in multivariate data sets". Physica D. 163 (3–4): 236–251. Bibcode:2002PhyD..163..236S. doi:10.1016/S0167-2789(01)00386-4.
  10. Blinowska, K. J.; Żygierewicz, J. (2012). Practical Biomedical Signal Analysis Using Matlab. CRC Press, Boca Raton. Bibcode:2011pbsa.book.....Z.
  11. Achermann, P.; Hartmann, R.; Gunzinger, A.; Guggenbühl, W.; Borbély, A. A. (1994). "All night sleep and artificial stochastic control signals have similar correlation dimension". Electroencephalogr. Clin. Neurophysiol. 90 (5): 384–387. doi:10.1016/0013-4694(94)90054-X. PMID   7514985.
  12. Stam, C. J.; Suffczynski, P.; Lopes da Silva, F. H.; Lopes Da Silva, FH (1999). "Dynamics of the human alpha rhythm: evidence for non-linearity?". Clin. Neurophysiol. 110 (10): 1801–1813. doi:10.1016/S1388-2457(99)00099-1. PMID   10574295. S2CID   32554820.
  13. Blinowska, K. J.; Malinowski, M. (1991). "Non-linear and linear forecasting of the EEG time series". Biol Cybern. 66 (2): 159–165. doi:10.1007/BF00243291. PMID   1768720. S2CID   19441303.
  14. Winterhalder, M.; Schelter, B.; Hesse, W.; Schwab, K.; Leistritz, L.; Klan, D.; Bauer, R.; Timmer, J.; Witte, H. (2005). "Comparison of linear signal processing techniques to infer directed interactions in multivariate neural systems". Signal Process. 85 (11): 2137–2160. CiteSeerX   10.1.1.123.2234 . doi:10.1016/j.sigpro.2005.07.011.
  15. 1 2 Kuś, R.; Kamiński, M.; Blinowska, K. J. (2004). "Determination of EEG activity propagation: pair-wise versus multichannel estimate". IEEE Trans Biomed Eng. 51 (9): 1501–1510. doi:10.1109/TBME.2004.827929. PMID   15376498. S2CID   25213886.
  16. 1 2 Blinowska, K. J.; Kuś, R.; Kamiński, M. (2004). "Granger causality and information flow in multivariate processes". Phys. Rev. E. 70 (5): 050902 (also in Virt J Biol Phys Res 8(11)). Bibcode:2004PhRvE..70e0902B. doi:10.1103/PhysRevE.70.050902. PMID   15600583.
  17. Granger, C. W. J. (1969). "Investigating causal relations in by econometric models and cross-spectral methods". Econometrica. 37 (3): 424–438. doi:10.2307/1912791. JSTOR   1912791.
  18. Granger, C. W. J. (1980). "Testing for causality: a personal viewpoint". J Econ Dyn Control. 2: 329–352. doi:10.1016/0165-1889(80)90069-X.
  19. 1 2 3 Blinowska, K. J.; Kaminski, M. (2006). "Multivariate Signal Analysis by Parametric Models". In Schelter, B.; Winterhalder, W.; Timmer, J. (eds.). Handbook of Time Series Analysis. Wiley-VCH Verlag.
  20. Crimi, A.; al., et (2021). "Structurally constrained brain connectivity". NeuroImage. 289 (1): 118288. doi: 10.1016/j.neuroimage.2021.118288 . PMID   34147631. S2CID   235468119.
  21. Geweke, J. (1982). "Measurement of linear dependence and feedback between multiple time series". Journal of the American Statistical Association. 77 (378): 304–324. doi:10.1080/01621459.1982.10477803.
  22. 1 2 Ginter Jr., J.; Blinowska, K. J.; Kaminski, M.; Durka, P. J.; Pfurtscheller, G.; Neuper, C. (2005). "Propagation of EEG activity in beta and gamma band during movement imagery in human". Methods Inf. Med. 44 (1): 106–113. doi:10.1055/s-0038-1633932. PMID   15778801. S2CID   13036715.
  23. 1 2 Kaminski, M.; Blinowska, K. J. (1991). "A new method of the description of the information flow in brain structures". Biol Cybern. 65 (3): 203–210. doi:10.1007/BF00198091. PMID   1912013. S2CID   20924487.
  24. Kaminski, M.; Ding, M.; Truccolo, W.; Bressler, S. (2001). "Evaluating causal relations in neural systems: Granger causality, directed transfer function and statistical assessment of significance". Biol Cybern. 85 (2): 145–157. doi:10.1007/s004220000235. PMID   11508777. S2CID   11318476.
  25. Korzeniewska, A.; Mańczak, M.; Kaminski, M.; Blinowska, K. J.; Kasicki, S. (2003). "Determination of information flow direction among brain structures by a modified Directed Transfer Function method (dDTF)". J Neurosci Methods. 125 (1–2): 195–207. doi:10.1016/S0165-0270(03)00052-9. PMID   12763246. S2CID   38538879.
  26. Kocsis, B.; Kaminski, M. (2006). "Dynamic changes in the direction of the theta rhythmic drive between Supramammillary Nucleus and the Septohippocampal system". Hippocampus. 16 (6): 531–540. doi:10.1002/hipo.20180. PMID   16598710. S2CID   36676205.
  27. Baccala, L. A.; Sameshima, K. (2001). "Partial directed coherence: A new conception in neural structure determination". Biol Cybern. 84 (6): 463–474. doi:10.1007/PL00007990. PMID   11417058. S2CID   30435970.
  28. Schelter, B.; Timmer, J.; Eichler, M. (2009). "Assessing the strength of directed influences among neural signals using renormalized partial directed coherence". J. Neurosci. Methods. 179 (1): 121–130. doi:10.1016/j.jneumeth.2009.01.006. PMID   19428518. S2CID   11631344.
  29. Kaminski, M.; Szerling, P.; Blinowska, K. (Nov 2–5, 2010). "Comparison of methods for estimation of time-varying transmission in multichannel data". Proc. 10th IEEE International Conference on Information Technology and Applications in Biomedicine. Corfu, Greece.
  30. Efron, B. (1979). "Bootstrap methods: another look at the jackknife". Ann. Stat. 7: 1–6. doi: 10.1214/aos/1176344552 .
  31. Camchong, Jazmin; MacDonald, Angus W. III; Bell, Christopher; Mueller, Bryon A.; Lim, Kelvin O. (2011-05-01). "Altered Functional and Anatomical Connectivity in Schizophrenia". Schizophrenia Bulletin. 37 (3): 640–650. doi:10.1093/schbul/sbp131. ISSN   0586-7614. PMC   3080691 . PMID   19920062.
  32. Rosen, A. C.; Bhat, J. V.; Cardenas, V. A.; Ehrlich, T. J.; Horwege, A. M.; Mathalon, D. H.; Roach, B. J.; Glover, G. H.; Badran, B. W.; Forman, S. D.; George, M. S. (May 2021). "Targeting location relates to treatment response in active but not sham rTMS stimulation". Brain Stimulation. 14 (3): 703–709. doi:10.1016/j.brs.2021.04.010. ISSN   1876-4754. PMC   8884259 . PMID   33866020. S2CID   233236061.
  33. Höller, Yvonne; Thomschewski, Aljoscha; Bergmann, Jürgen; Kronbichler, Martin; Crone, Julia S.; Schmid, Elisabeth V.; Butz, Kevin; Höller, Peter; Nardone, Raffaele; Trinka, Eugen (2014-08-01). "Connectivity biomarkers can differentiate patients with different levels of consciousness". Clinical Neurophysiology. 125 (8): 1545–1555. doi:10.1016/j.clinph.2013.12.095. ISSN   1388-2457. PMID   24394693. S2CID   21226652.
  34. Yeung, Jacky T.; Young, Isabella M.; Doyen, Stephane; Teo, Charles; Sughrue, Michael E. (2021-10-28). "Changes in the Brain Connectome Following Repetitive Transcranial Magnetic Stimulation for Stroke Rehabilitation". Cureus. 13 (10): e19105. doi: 10.7759/cureus.19105 . ISSN   2168-8184. PMC   8614179 . PMID   34858752.
  35. Dadario, Nicholas B.; Brahimaj, Bledi; Yeung, Jacky; Sughrue, Michael E. (2021). "Reducing the Cognitive Footprint of Brain Tumor Surgery". Frontiers in Neurology. 12: 711646. doi: 10.3389/fneur.2021.711646 . ISSN   1664-2295. PMC   8415405 . PMID   34484105.
  36. Glasser, Matthew F; Coalson, Timothy S; Robinson, Emma C; Hacker, Carl D; Harwell, John; Yacoub, Essa; Ugurbil, Kamil; Andersson, Jesper; Beckmann, Christian F; Jenkinson, Mark; Smith, Stephen M (2016-08-11). "A multi-modal parcellation of human cerebral cortex". Nature. 536 (7615): 171–178. Bibcode:2016Natur.536..171G. doi:10.1038/nature18933. ISSN   0028-0836. PMC   4990127 . PMID   27437579.
  37. Doyen, Stephane; Nicholas, Peter; Poologaindran, Anujan; Crawford, Lewis; Young, Isabella M.; Romero-Garcia, Rafeael; Sughrue, Michael E. (2021). "Connectivity-based parcellation of normal and anatomically distorted human cerebral cortex". Human Brain Mapping. 43 (4): 1358–1369. doi:10.1002/hbm.25728. ISSN   1097-0193. PMC   8837585 . PMID   34826179. S2CID   244660926.
  38. 1 2 Franaszczuk, P. J.; Bergey, G. J.; Kaminski, M. (1994). "Analysis of mesial temporal seizure onset and propagation using the directed transfer function method". Electroencephalogr. Clin. Neurophysiol. 91 (6): 413–427. doi:10.1016/0013-4694(94)90163-5. PMID   7529681.
  39. 1 2 Kaminski, M.; Blinowska, K. J.; Szelenberger, W. (1997). "Topographic analysis of coherence and propagation of EEG activity during sleep and wakefulness". Electroencephalogr. Clin. Neurophysiol. 102 (3): 216–227. doi:10.1016/S0013-4694(96)95721-5. PMID   9129577.
  40. 1 2 Korzeniewska, A.; Kasicki, S.; Kaminski, M.; Blinowska, K. J. (1997). "Information flow between hippocampus and related structures during various types of rat's behavior". J Neurosci Methods. 73 (1): 49–60. doi:10.1016/S0165-0270(96)02212-1. PMID   9130678. S2CID   37590742.
  41. 1 2 Ginter Jr, J.; Blinowska, K. J.; Kaminski, M.; Durka, P. J. (2001). "Phase and amplitude analysis in time-frequency space-application to voluntary finger movement". J Neurosci Methods. 110 (1–2): 113–124. doi:10.1016/S0165-0270(01)00424-1. PMID   11564531. S2CID   8328455.
  42. 1 2 Kus, R.; Ginter Jr, J.; Blinowska, K. J. (2006). "Propagation of EEG activity during finger movement and its imagination". Acta Neurobiol Exp . 66 (3): 195–206. doi: 10.55782/ane-2006-1607 . PMID   17133951.
  43. Pfurtscheller, G. (1999). "Quantification of ERD and ERS in the time domain". Event-Related Desynchronization. Elsevier.
  44. "DTF_MOV.HTML". Archived from the original on 2007-11-18. Retrieved 2012-08-06.
  45. 1 2 Blinowska, K. J.; Kus, R.; Kaminski, M.; Janiszewska, J. (2010). "Transmission of information during Continuous Attention Test". Brain Topography. 23 (2): 205–213. doi:10.1007/s10548-010-0137-y. PMID   20191316. S2CID   8579316.
  46. "Cat Experiment Animations". Archived from the original on 2013-10-03. Retrieved 2012-08-06.
  47. 1 2 Brzezicka, A.; Kaminski, M.; Kaminski, J.; Blinowska, K. J. (2011). "Information transfer during transitive reasoning task". Brain Topography. 24 (1): 1–8. doi:10.1007/s10548-010-0158-6. PMC   3036833 . PMID   20686832.
  48. "Cat Experiment Animations". Archived from the original on 2016-03-04. Retrieved 2012-07-27.
  49. Brunner, C.; Billinger, M.; Seeber, M.; Mullen, T. R.; Makeig, S. (2016). "Volume conduction influences scalp-based connectivity estimates". Front Comput Neurosci. 10: 121. doi: 10.3389/fncom.2016.00121 . PMC   5119053 . PMID   27920674.
  50. Van De Steen, F.; Faes, L.; Karahan, E.; Songsiri, J.; Valdes-Sosa, P. A.; Marinazzo, D. (2016). "Critical Comments on EEG Sensor Space Dynamical Connectivity Analysis". Brain Topogr. 32 (4): 643–654. arXiv: 1607.03687 . Bibcode:2016arXiv160703687V. doi:10.1007/s10548-016-0538-7. PMID   27905073. S2CID   11095444.
  51. Kaminski, M.; Blinowska, K. J. (2014). "Directed Transfer Function is not influenced by volume conduction - inexpedient pre-processing should be avoided". Front Comput Neurosci. 8: 61. doi: 10.3389/fncom.2014.00061 . PMC   4050361 . PMID   24959136.
  52. Kaminski, M.; Blinowska, K. (2017). "The Influence of Volume Conduction on DTF Estimate and the Problem of Its Mitigation". Front Comput Neurosci. 11: 36. doi: 10.3389/fncom.2017.00036 . PMC   5427064 . PMID   28553220.
  53. Blinowska, K. J.; Kaminski, M.; Kaminski, J.; Brzezicka, A. (2010). "Information processing in brain and dynamic patterns of transmission". Proc. of IEEE EMBS Conference. Buenos Aires, Argentina. pp. 1722–1726.
  54. Korzeniewska, A.; Crainiceanu, C.; Kus, R.; Franaszczuk, P. J.; Crone, N. E. (2008). "Dynamics of event-related causality (ERC) in brain electrical activity". Hum. Brain Mapp. 29 (10): 1170–1192. doi:10.1002/hbm.20458. PMC   6870676 . PMID   17712784.
  55. Niso, G.; Bruña, R.; Pereda, E. (2013). "HERMES: towards an integrated toolbox to characterize functional and effective brain connectivity". Neuroinformatics. 11 (4): 405–434. arXiv: 1305.2550 . Bibcode:2013arXiv1305.2550N. doi:10.1007/s12021-013-9186-1. PMID   23812847. S2CID   1043710.